

Skills and limitations of the adiabatic omega equation: how effective is it to retrieve oceanic vertical circulation at meso and submesoscale ?

Alice Pietri, Xavier Capet, Francesco d'Ovidio, Marina Lévy, Julien Sommer,
Jean-Marc Molines, Hervé Giordani

► To cite this version:

Alice Pietri, Xavier Capet, Francesco d'Ovidio, Marina Lévy, Julien Sommer, et al.. Skills and limitations of the adiabatic omega equation: how effective is it to retrieve oceanic vertical circulation at meso and submesoscale ?. *Journal of Physical Oceanography*, American Meteorological Society, In press. hal-03096579

HAL Id: hal-03096579

<https://hal.archives-ouvertes.fr/hal-03096579>

Submitted on 5 Jan 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 Skills and limitations of the adiabatic omega equation: how effective is it to
2 retrieve oceanic vertical circulation at meso and submesoscale ?

3 Alice Pietri^{*†}, Xavier Capet, Francesco d’Ovidio, Marina Levy

4 *Laboratoire d’Océanographie et du Climat, Institut Pierre Simon Laplace (LOCEAN,
5 CNES/CNRS/IRD/MNHN/SU), Paris, France*

6 Julien Le Sommer, Jean-Marc Molines

7 *Univ. Grenoble-Alpes (CNRS/IRD/IGE), Grenoble, France*

8 Hervé Giordani

9 *Centre National de Recherches, Météorologiques, Météo-France, Toulouse, France*

10 *Corresponding author address: Alice Pietri, LOCEAN-IPSL/CNES, Jussieu, Paris.

11 E-mail: alice.pietri@locean-ipsl.upmc.fr

12 †Current affiliation: Instituto del Mar del Peru (IMARPE), Callao, Perú.

ABSTRACT

13 The quasi-geostrophic and the generalized omega equations are the most
14 widely used methods to reconstruct vertical velocity (w) from *in-situ* data.
15 As observational networks with much higher spatial and temporal resolutions
16 are being designed, the question rises of identifying the approximations and
17 scales at which an accurate estimation of w through the omega equation can
18 be achieved and what are the critical scales and observables needed. In this
19 paper we test different adiabatic omega reconstructions of w over several re-
20 gions representative of main oceanic regimes of the global ocean in a fully
21 eddy-resolving numerical simulation with a $1/60^\circ$ horizontal resolution. We
22 find that the best reconstructions are observed in conditions characterized by
23 energetic turbulence and/or weak stratification where near-surface frontal pro-
24 cesses are felt deep into the ocean interior. The quasi-geostrophic omega
25 equation gives satisfactory results for scales larger than ~ 10 km horizon-
26 tally while the improvements using a generalized formulation are substantial
27 only in conditions where frontal turbulent processes are important (provid-
28 ing improvements with satisfactory reconstruction skill down to ~ 5 km in
29 scale). The main sources of uncertainties that could be identified are related
30 to processes responsible for ocean thermal wind imbalance (TWI), which is
31 particularly difficult to account for (especially in observation-based studies)
32 and to the deep flow which is generally improperly accounted for in omega
33 reconstructions through the bottom boundary condition. Nevertheless, the
34 reconstruction of mesoscale vertical velocities may be sufficient to estimate
35 vertical fluxes of oceanic properties in many cases of practical interest.

³⁶ **1. Introduction**

³⁷ In geophysical fluids, the combined effect of stratification and rotation strongly inhibits vertical
³⁸ velocities over a broad range of horizontal scales (L_h), near and above the so-called deformation
³⁹ radius (R_d), typically 30 km in the ocean. Vertical velocities remain small even for L_h much below
⁴⁰ R_d (Pollard and Regier 1992; Giordani et al. 2006), typically a few meters to several tens of me-
⁴¹ ters per day for submesoscale motions, $L_h \sim O(1)$ km, although their intensity tends to increase
⁴² somewhat at finer scales. Much weaker than horizontal advection, vertical transport of oceanic
⁴³ properties such as heat and biogeochemical tracers is nevertheless of crucial importance for the
⁴⁴ overall functioning of the world ocean (Lévy et al. 2012a). In some regions, atmospheric forc-
⁴⁵ ings are such that the large-scale flow (100 km and larger) has a vertical component, *e.g.*, under
⁴⁶ the influence of coastal upwelling favourable winds or positive wind stress curl. At finer scale
⁴⁷ (1-100km) intermittent vertical velocities are associated with the mesoscale and submesoscale tur-
⁴⁸ bulence and can be generated by forced and unforced motions such as frontogenesis, baroclinic
⁴⁹ instabilities or air-sea interactions, with possible coupling between them (*e.g.* Thomas and Lee
⁵⁰ 2005). They are responsible for vertical fluxes that have proved difficult to quantify but are widely
⁵¹ believed to play a major role in the heat (Ferrari 2011; Su et al. 2020; Siegelman et al. 2020) and
⁵² salt budgets (Lien et al. 2014), in the carbon and nutrient cycles (Ledwell et al. 2008; Balwada
⁵³ et al. 2018), and in shaping oceanic biodiversity (Lévy et al. 2010, 2012b, 2014, 2018; Siegelman
⁵⁴ et al. 2020). It should be noted that vertical velocities also vary at the scales smaller than the
⁵⁵ submesoscale in particular vertical fluxes associated with 3D turbulence (Whitt et al. 2019). How-
⁵⁶ ever the submesoscale-mesoscale (hereafter SMS) range on which this study focuses is important
⁵⁷ because i) it presumably contains a large fraction of co-variance between w and many key tracer
⁵⁸ fields (Ledwell et al. 2008; Chenillat et al. 2015; Balwada et al. 2018), ii) SMS vertical motions

59 can be coherent over relatively long/large time/space scales (including vertically) such that they
60 produce long range vertical displacements and fluxes, *e.g.*, organic and inorganic carbon from the
61 euphotic layer into the dark ocean (Boyd et al. 2019).

62 Direct measurements of vertical velocities with SMS spatiotemporal resolution would thus be
63 highly desirable. However the magnitude of w at these scales is typically $O(1)$ mm s $^{-1}$ (~ 100 m
64 day $^{-1}$) or less (*e.g.*, up to 2-3 mm s $^{-1}$ in the highly turbulent Gulf Stream, Lindstrom and Watts
65 1994) which places them below the noise level of any existing current meter for the typical time
66 scales of a few days to weeks over which they vary. Different ingenious ways to circumvent this
67 difficulty have been developed over time. For instance, direct integrated measurements of vertical
68 displacements $\int w dt$ have been made using Lagrangian drifters (Bower and Rossby 1989; D'Asaro
69 et al. 2004; Steffen and D'Asaro 2002). Alternatively, indirect reconstruction methods have been
70 proposed based on the heat/density conservation equation (Strass 1994; Lindstrom et al. 1997; Yu
71 et al. 2019), the vorticity equation (Strass 1994; Giordani et al. 2005) or the 3D non-divergence of
72 the flow (Helber and Weisberg 2001; Horii et al. 2011). A different framework has also emerged
73 to infer vertical velocities from the theory of surface quasigeostrophy (SQG) (Held et al. 1995;
74 Lapeyre and Klein 2006a; LaCasce and Mahadevan 2006), where the 3D flow structure can be
75 essentially determined from the knowledge of the surface buoyancy field (Isern-Fontanet et al.
76 2006; Klein et al. 2009; Ponte and Klein 2013; Qiu et al. 2020). Overall, the most commonly used
77 method to infer w is based on frontogenetic theories and the so-called omega equation, which is
78 the subject of the present study.

79 Quasi-geostrophic and semi-geostrophic versions of the omega equation (Hoskins et al. 1978)
80 have been applied for decades (Leach 1987; Pollard and Regier 1992). The former and to a lesser
81 extent the latter are by nature suited to low Rossby number environments, *i.e.*, *a priori* away from
82 regions of intense vertical velocities. A generalized version of the omega equation was first intro-

duced in the atmospheric community (Davies-Jones 1991; Pauley and Nieman 1992; Giordani and Caniaux 2001) and subsequently applied to the ocean (Viúdez et al. 2002; Giordani et al. 2006). Vertical velocity forcing processes present in this generalized omega equation are kinetic deformation that arises in shear and confluence situations, mixing and momentum diffusion which can also disrupt the thermal wind balance and an additional prognostic term due to the rate of change of unbalanced motions. This latter term shall be zero under the quasi-geostrophic approximation and is systematically neglected in ocean applications, which makes the omega equation diagnostic for w (see Qiu et al. 2020 for the only evaluation of this term that we know of). Despite this simplification, the generalized formulations of the omega equation are expected to hold even in regions where the flow exhibits high Rossby number (Viúdez et al. 2002; Viúdez and Dritschel 2004; Shearman et al. 2000). Since the omega equation is most frequently used to infer w from observations the chosen formulation usually depends on the data available. The adiabatic quasi-geostrophic version of the equation only requires density observations and a reference level to derive geostrophic currents from the thermal wind balance. Knowledge of the absolute horizontal velocity field allows to take into account the effect of the ageostrophic deformation and advection. Solving more elaborate forms of the omega equation require additional data, such as atmospheric forcing (Giordani et al. 2006). Statistical methods based on multivariate empirical orthogonal functions can be used to determine the SMS ocean state from surface satellite information and sparse in situ data (e.g. ARMOR3D high resolution operational product, Guinehut et al. 2012). Those methods have been used regularly to infer the forcing terms for omega inversions (Buongiorno Nardelli and Santoleri 2005; Buongiorno Nardelli et al. 2012; Buongiorno Nardelli et al. 2018; Barceló-Llull et al. 2018; Buongiorno Nardelli 2020).

Numerous investigations of oceanic vertical velocities based on the omega equation have been carried out since the 1980s, most frequently in the context of mesoscale-resolving observational

efforts. A few of them have used independent ways to estimate w and evaluate the skills of the omega reconstructions. Conclusions are generally that the omega equation has reasonable skills at the mesoscale. A few studies have also applied this equation to numerical model outputs to test its reliability and degree of accuracy (Pinot et al. 1996; Allen et al. 2001; Rixen et al. 2003; Uchida et al. 2019). The domain of validity and typical errors attached to an omega reconstruction for realistic cases are however not clearly established. This is particularly true at submesoscale where the omega equation has been increasingly applied (Pallàs-Sanz et al. 2010). The benefit that one can expect from using more elaborate versions of the omega equation compared to the quasigeostrophic formulation are also not clearly established. An overview of the literature on the subject offers a great diversity of conclusions (from major to no benefits or even degradation of the reconstruction). We provide a review of omega-reconstructions literature in the the bibliography table (SI1). Overall, this literature appears to be mainly composed of an accumulation of test cases (Pascual et al. 2017; Buongiorno Nardelli et al. 2012; Rixen et al. 2003; Allen et al. 2001), many of which are in idealized settings (Viúdez and Dritschel 2004). These individual cases can be difficult to compare against one another.

The main novelty of the present study is to apply the same analysis framework to assess the skills of the adiabatic omega equation in several dynamical regimes representative of a broad diversity of ocean conditions. The aim is to propose a more integrated and comprehensive understanding of the skills and limitations of omega reconstructions. Given this ambition, we restrict the scope somewhat by mainly focusing on vertical velocities outside mixed layers, typically at depths $\sim 200 - 400$ m. Submesoscale velocities in the mixed layer are important too (e.g., Smith et al. 2016) but they more strongly compete and interact with 3D turbulent processes responsible with intense mixing in ways that are just beginning to be clarified (Thomas and Lee 2005; Hamlington et al. 2014; Suzuki et al. 2016; Sullivan and McWilliams 2018; Callies and Ferrari 2018). On

131 the other hand, we expect SMS vertical velocities obtained by means of omega reconstruction to
132 be more readily useful to estimate tracer fluxes below the mixed layer, typically upward fluxes of
133 nutrient into the euphotic layer (Pascual et al. 2015) or downward fluxes of oxygen into subsurface
134 hypoxic layers (Thomsen et al. 2016).

135 Exploring the ability of the adiabatic omega equation to reconstruct w in our realistic, eddy-
136 resolving, circulation model reveals that, in this depth range, reconstruction skills turn out to be
137 strongly sensitive to the dynamical regime under consideration, but also to the physical (length)
138 scale of interest. In particular, it is shown that omega reconstructions perform well for scales
139 down to ~ 10 km while rapid degradation occurs at smaller scales. Consequently, the best results
140 are obtained in conditions characterized by high vertical velocity variance which are found in
141 regions with intense *mesoscale* frontogenesis. On the other hand, relaxing the QG assumptions
142 with the generalized formulation is shown to have a modest impact on the reconstruction. Instead,
143 an analysis of the relative importance of the sources of errors reveals that a major impact can
144 be attributed to the choice of the bottom boundary conditions (BBC). The impact of neglecting
145 vertical mixing terms, though presently deemed limited to the upper layers, would also require
146 dedicated investigations.

147 The paper is organized as follows. Data and methods are presented in section 2. In section 4
148 vertical velocity reconstructions in the different dynamical regimes retained for this study are
149 evaluated. A series of sensitivities allows us to test the impact of the level of complexity of the
150 omega equation; the formulation of the discrete problem; and several possible choices related to
151 the boundary conditions. Some reflections on the sources of errors and the dynamical environment
152 are offered in the discussion.

153 **2. Data and Methods**

154 Mathematical symbols have their usual meaning. T , S , ρ and σ_t refer to (respectively) potential
155 temperature, salinity, density and potential density anomaly. x (resp. y and z) and u (resp. v and
156 w) refer to zonal (resp. meridional and vertical) directions and velocity. More precisely in the case
157 of vertical velocities we will distinguish true velocities w from reconstructed velocities denoted ω
158 with a subscript that refers to the precise omega equation formulation that is being used (see below
159 Sec. 2b). N^2 is the buoyancy frequency.

160 *a. The NATL model*

161 The outputs from a submesoscale-permitting numerical simulation are used to reconstruct verti-
162 cal velocity fields using different versions of the omega equation and compare them to the ground
163 truth model vertical velocities w_{model} . The NATL60 MJM155 simulation is run using the NEMO
164 v3.5 code. It has a horizontal resolution of $1/60^\circ$ (dx comprised between 0.8 and 1.6 km depend-
165 ing on the latitude), yielding an effective resolution of ~ 10 dx ($\sim 10 - 15$ km) (Soufflet et al.
166 2016). This means that a turbulent feature associated with a typical wavelength around $\sim 10 - 15$
167 km (typical scale $\sim 1.5 - 2$ km) are energetically subjected to a negligible influence of the dissi-
168 pation operator. Below those scales numerical errors can arise that will affect the representation
169 of physical processes although the misrepresented dynamics in the model solutions may still share
170 important properties with the dynamics of the system obtained after resolution convergence (Le
171 Sommer et al. 2018). On the vertical, the simulation has 300 levels (dz increases with depth
172 and ranges from 1 to 30 m) and in the range of depths of analysis (200-400 m depth), the ver-
173 tical resolution is ~ 10 m. The simulation is forced by realistic atmospheric forcings (DFS5.2)
174 and boundary conditions (GLORYS2V3). It was integrated over a 5 years period (2004-2008)
175 (Amores et al. 2018; Ducousoo et al. 2017; Fresnay et al. 2018).

176 The model domain encompasses the whole North Atlantic. For this study, four contrasted sectors
177 were selected. For each region, eleven consecutive daily averaged outputs are analysed for two
178 opposite seasons of the year, in June and December. Near-inertial motions produced by the high-
179 frequency variability of the atmospheric forcings are partly filtered out and partly aliased in model
180 u, v, σ_t and w daily fields that are used in this study. A cleaner separation between balanced
181 and unbalanced motions would be useful to untangle their respective roles (e.g., see Qiu et al.
182 2020). Lacking the high-frequency model outputs needed to do better, we note that, in most
183 situations, omega estimations made using observations contain an unknown but presumably larger
184 inertia-gravity (IG) wave contribution. Our study can thus be considered as a favorable evaluation
185 in which this source of errors is minimized by the daily averaging. Absence of tidal forcing
186 in NATL60 will also tend to underestimate the energy level of unbalanced motion (Qiu et al.
187 2018) and thus has a similar consequence. The relevance of the study to the real ocean context
188 is however justified by the fact that model vertical velocities in the submesoscale-permitting class
189 of simulations are known to capture the patterns expected from the theory and observation based
190 studies.

191 The four regions we focus on are:

192 – the Gulf Stream/LatMix region (Shcherbina et al. 2013, LMX) centered around 38°N and
193 67°W. It encompasses the very energetic Gulf Stream current. It is characterized by intense
194 mesoscale activity composed of meanders and eddies. Vertical motions in the Gulf Stream
195 region have been the subject of many studies aimed at describing water exchanges between
196 the jet core and its vicinities (Bower and Rossby 1989; Lindstrom and Watts 1994; Joyce et al.
197 2013). This environment and the large amplitude meanders of the Gulf Stream in particular
198 are well known to produce intense vertical velocities (Fig. 1a).

199 – The region of the Azores current (AZO) centered at 33°N, 34°W which is characteristic of
200 a subtropical regime with limited atmospheric forcing and modest mesoscale activity. It is
201 the least energetic of the four regions in terms of vertical velocities (Fig. 1b). We relate this
202 to the modest role played by surface density contrasts and upper ocean frontogenesis in the
203 regional dynamics (Lapeyre 2009; Volkov and Fu 2010, 2011)

204 – An area of the subpolar gyre South West of Iceland encompassing part of the Rekjanes ridge
205 (REK) and centered around 54°N, 31°W. The regional dynamics is characterized by weak
206 mean flow and a moderately intense mesoscale activity made of deep reaching isolated struc-
207 tures (Fig. 1c).

208 – A sector of the Atlantic North-Eastern margin near 49°N and 15°W, where the Osmosis ex-
209 periment took place (Buckingham et al. 2016, OSM). The regional dynamics is characterized
210 by weak large scale circulation, weak mesoscale activity, and a marked seasonality of the
211 submesoscale activity which is very intense in the wintertime (Fig. 1d; Thompson et al.
212 2016).

213 To limit the computational cost of inverting the omega equation a 3D sub-domain of each region
214 is retained with dimensions ~ 360 by ~ 270 km on the horizontal and 1600 m in the vertical (re-
215 duced depth ranges will also be used in sensitivity tests section 4d). Horizontal (native) resolution
216 is ~ 1.5 km while the data is linearly interpolated on a regular vertical grid with a 5 m resolution.
217 For each region, a particular depth is selected to perform some of our analyses. As presented in the
218 introduction the spirit of this investigation led us to choose depth levels 50 m below the deepest
219 winter mixed layers encountered in that region so near-surface frontal processes are attenuated at
220 this depth and our study is useful to make progress on biogeochemical fluxes between the mixed
221 layer and the ocean interior. Specifically, selected depths of analysis (referred to as z_a) are 220 m
222 for LMX, 250 m for AZO, and 380 m for REK and OSM.

223 *b. Formulations of the omega equation*

224 The underlying principles of the omega equation combine two lines of argument (Hoskins 1982)

225 – kinematical: a turbulent flow stirring an heterogeneous surface buoyancy field produces re-
226 gions of gradient intensification. Specifically, frontal intensification is promoted in the con-
227 fluence and shear situations that are frequently encountered in mesoscale turbulent conditions
228 (e.g. Fig. 2).

229 – dynamical: the thermal wind balance, which should approximately hold at
230 meso/submesoscale, is disrupted in situations of frontal intensification where density
231 gradients are enhanced while the vertical velocity shear is being reduced. This leads to the
232 development of ageostrophic secondary circulations (ASC) that attempt to thwart thermal
233 imbalance by restoring shear and slumping isopycns. In the ocean interior this process is very
234 efficient at preventing frontal intensification which is a further justification for the weakness
235 of vertical velocities away from the surface. At the air-sea interface, the upper boundary
236 condition $w \approx 0$ limits the efficiency of ageostrophic circulations so frontal intensification
237 can generally proceed further and yield intense vertical velocities.

238 Mathematically, the frontogenesis process is captured by a relationship between the spatial
239 derivatives of w and a forcing term expressed as the divergence of a vector of forcings \mathbf{Q}

$$\mathcal{L}(w) = \nabla \cdot \mathbf{Q} \quad (1)$$

240 \mathcal{L} is a second-order differential operator that can also take different forms depending on which
241 processes responsible for thermal wind disruptions are being considered in \mathbf{Q} .

242 A starting point to derive the omega equation for the general case is the set of equations govern-
 243 ing hydrostatic and Boussinesq flows:

$$\frac{du}{dt} - fv = -\frac{1}{\rho_0} \frac{\partial p}{\partial x} + F_x \quad (2)$$

$$\frac{dv}{dt} + fu = -\frac{1}{\rho_0} \frac{\partial p}{\partial y} + F_y \quad (3)$$

$$\frac{d\rho}{dt} = F_\rho \quad (4)$$

$$\nabla \cdot \mathbf{v} = 0 \quad (5)$$

$$(6)$$

244 where (F_x, F_y) and F_ρ are source/sink of momentum and buoyancy caused by turbulent mixing.

The flow is then decomposed into a geostrophic (\mathbf{v}_g) and ageostrophic (\mathbf{v}_{ag}) component

$$\mathbf{v} = \mathbf{v}_g + \mathbf{v}_{ag}$$

245 where the geostrophic velocity satisfies the thermal wind balance:

$$\begin{cases} f \frac{\partial u_g}{\partial z} = \frac{g}{\rho} \frac{\partial \rho}{\partial y} \\ f \frac{\partial v_g}{\partial z} = -\frac{g}{\rho} \frac{\partial \rho}{\partial x} \end{cases} \quad (7)$$

246 and the residual ageostrophic flow component departing from this balance (the so-called thermal
 247 wind imbalance - TWI) satisfies:

$$\begin{cases} f \frac{\partial u_{ag}}{\partial z} = f \frac{\partial u}{\partial z} - \frac{g}{\rho} \frac{\partial \rho}{\partial y} \\ f \frac{\partial v_{ag}}{\partial z} = f \frac{\partial v}{\partial z} + \frac{g}{\rho} \frac{\partial \rho}{\partial x} \end{cases} \quad (8)$$

248 The generalized omega equation (1) is obtained by manipulating the time evolution equation for
 249 the TWI and yields (Giordani and Planton 2000):

$$f^2 \frac{\partial^2 w}{\partial z^2} + \nabla_h (N^2 \cdot \nabla_h w) = \nabla \cdot \mathbf{Q}, \quad (9)$$

250 where the \mathbf{Q} vector involved in the right hand side (rhs) of the equation can be expressed as a sum
 251 of different forcings:

$$\mathbf{Q} = 2 \underbrace{(\mathbf{Q}_{\text{tw}_g} + \mathbf{Q}_{\text{tw}_{\text{ag}}})}_{\mathbf{Q}_{\text{tw}}} + \mathbf{Q}_{\text{dag}} + \mathbf{Q}_{\text{dr}} + \mathbf{Q}_{\text{th}} + \mathbf{Q}_{\text{dm}} \quad (10)$$

252 following the notations of Giordani et al. (2006). \mathbf{Q}_{tw} is the kinematic deformation and can be de-
 253 composed into a geostrophic \mathbf{Q}_{tw_g} and an ageostrophic component $\mathbf{Q}_{\text{tw}_{\text{ag}}}$. \mathbf{Q}_{dag} is the deformation
 254 of the thermal wind imbalance and \mathbf{Q}_{dr} its material rate of change. In all practical situations, \mathbf{Q}_{dr}
 255 cannot be estimated and is therefore unaccounted for in the remainder of the study. \mathbf{Q}_{th} and \mathbf{Q}_{dm}
 256 refer respectively to the diabatic turbulent buoyancy and momentum forcings.

257 Being interested in the ability to determine vertical velocities through and below the thermocline
 258 we neglect the effects of diffusive momentum and buoyancy fluxes which are mainly active in or
 259 immediately below the mixed layer (Giordani et al. 2006; Yoshikawa et al. 2012; Thomas et al.
 260 2010) but have a limited effect on subsurface velocities (Nagai et al. 2006; Yoshikawa et al. 2012).
 261 In fact, Xie et al. (2017), using microstructure shear measurements to infer the vertical diffusiv-
 262 ity, derived the vertical mixing terms (\mathbf{Q}_{th} and \mathbf{Q}_{dm}) and showed that below the thermocline the
 263 vertical velocity associated to those terms is one to two order of magnitude smaller than the one
 264 associated to the deformation of the flow. An exception is the study of (Qiu et al. 2020) in which
 265 vertical velocities arising from diffusive terms remain of magnitude comparable to those produced
 266 by ageostrophic deformation ($\mathbf{Q}_{\text{tw}_{\text{ag}}}$) well below the mixed layer. We suspect that this is because
 267 vertical velocities due to mixing are not calculated explicitly in Qiu et al. (2020) but instead are
 268 obtained as a residual and thus also contain contributions from various sources such as imperfect
 269 boundary conditions and other numerical errors (see Sec. 4c and 4d).

270 We will limit ourselves to comparing the two ω reconstructions that are most commonly
 271 used with real ocean data: the QG version where ω_{QG} is solely forced by the curvature of the

272 geostrophic flow ($\mathbf{Q}_{\text{QG}} = 2\mathbf{Q}_{\text{tw}_g}$) as in Hoskins et al. (1978); and a more complete formulation
 273 (NG) in which the \mathbf{Q} vector forcing ω_{NG} includes some contribution from the ageostrophic flow
 274 ($\mathbf{Q}_{\text{NG}} = 2\mathbf{Q}_{\text{tw}} + \mathbf{Q}_{\text{dag}}$).

275 The \mathbf{Q}_{tw_g} vector in the QG formulation has the form:

$$\mathbf{Q}_{\text{tw}_g} = \frac{g}{\rho_0} \left(\frac{\partial u_g}{\partial x} \frac{\partial \rho}{\partial x} + \frac{\partial v_g}{\partial x} \frac{\partial \rho}{\partial y}, \frac{\partial v_g}{\partial y} \frac{\partial \rho}{\partial y} + \frac{\partial u_g}{\partial y} \frac{\partial \rho}{\partial x} \right) \quad (11)$$

276 where u_g and v_g are the horizontal components of the geostrophic velocity. In this study, these
 277 velocities are estimated by applying the thermal wind balance downward starting from the sea
 278 level with the reference velocities at that level being derived from the model sea level anomalies.
 279 This procedure mimics what can be optimally done with real oceanic data, assuming that sea level
 280 elevation is known with good accuracy.

281 The NG formulation takes into account the curvature of the total flow and the deformation of the
 282 ageostrophic flow,

$$\mathbf{Q}_{\text{tw}} = \frac{g}{\rho_0} \left(\frac{\partial u}{\partial x} \frac{\partial \rho}{\partial x} + \frac{\partial v}{\partial x} \frac{\partial \rho}{\partial y}, \frac{\partial v}{\partial y} \frac{\partial \rho}{\partial y} + \frac{\partial u}{\partial y} \frac{\partial \rho}{\partial x} \right) \quad (12)$$

$$\mathbf{Q}_{\text{dag}} = f \left(\frac{\partial v}{\partial x} \frac{\partial u_{ag}}{\partial z} - \frac{\partial u}{\partial x} \frac{\partial v_{ag}}{\partial z}, \frac{\partial v}{\partial y} \frac{\partial u_{ag}}{\partial z} - \frac{\partial u}{\partial y} \frac{\partial v_{ag}}{\partial z} \right) \quad (13)$$

283 where u_{ag} and v_{ag} are the ageostrophic horizontal velocities. In practice, u_{ag} and v_{ag} are obtained
 284 as the difference between model horizontal velocities and the calculated geostrophic velocities u_g
 285 and v_g .

286 Two baseline reconstructions ω_{QG} and ω_{NG} are thus computed from the adiabatic QG and NG
 287 formulations of the \mathbf{Q} vector. For each of them the computation is made on the horizontal sub-
 288 domains defined in section 2a. The domain extension in the vertical goes from the surface down
 289 to 1600 m. Dirichlet boundary conditions are used at all the frontiers. A tridimensional buoy-
 290ancy frequency, N^2 , that varies both in the horizontal and in the vertical is used to solve all the
 291 inversions, although tests were run using a horizontally averaged profile and little differences were

292 observed (not shown). Specific reconstructions using different resolution, domain size or boundary
293 conditions are made to explore sensitivities and described in the corresponding sections.

294 To investigate the relative importance of different sources of errors we will carry out two forms
295 of omega reconstruction with either perfect right-hand side (ω will be denoted ω_{\dagger}) or perfect
296 boundary conditions (ω will be denoted ω^*). Perfect rhs omega inversions are computed using
297 forcing terms that are derived from model vertical velocities and the lhs of (9):

$$\nabla \cdot \mathbf{Q}_{\dagger} = f^2 \frac{\partial^2 w_{model}}{\partial z^2} + \nabla_h (N^2 \cdot \nabla_h w_{model}). \quad (14)$$

298 Precisely, (14) is evaluated using second order centered differences, i.e. in a way that is consistent
299 with how the MUDPACK elliptic solver (Adams 1989) that we use is being implemented. For
300 instance, along the x direction we use:

$$\left. \frac{\partial^2 w}{\partial x^2} \right|_i = \frac{1}{\Delta x} \left[\frac{(w_{i+1} - w_i)}{\Delta x} - \frac{(w_i - w_{i-1})}{\Delta x} \right] \quad (15)$$

301 Alternatively perfect boundary conditions can be imposed by applying w_{model} at the edges of the
302 inversion domain. Note that this is however not precisely possible to do at the ocean surface
303 because it is a moving interface in NEMO while it must be held fixed in the solving of the omega
304 equation.

305 *c. Baroclinic mode decomposition*

306 Under the assumptions of flat bottom and rigid lid at the ocean surface the linearized primitive
307 (or quasi-geostrophic) equations governing the horizontal and vertical components of inviscid fluid
308 motion can be separated (Cushman-Roisin and Beckers 2011). In the vertical, two sets of normal
309 mode eigenfunctions F_n and G_n form complete bases onto which pressure/horizontal velocity and
310 vertical velocities can respectively be projected (see annex A1).

311 Normal mode decomposition has proved useful even in situations where all above assumptions
312 are not satisfied and in particular when the bottom of the ocean is not flat (e.g. Rocha et al. 2013).
313 In order to gain insight into the sources of reconstruction errors normal modes decomposition will
314 be used to interpret the differences in reconstruction skills for the different regimes.

315 In practice the MODES program available at <http://www.d.umn.edu/~smkelly/software.html>
316 (Kelly 2016) is used to determine the mode structure at each model point. The modal amplitude
317 of the model vertical velocity is then determined locally.

318 **3. Description of the vertical velocity regimes**

319 The four regions and two seasons selected for this study exhibit contrasted dynamical regimes.
320 This will allow us to explore the sensitivity of the omega reconstruction behaviour and skills to the
321 nature of the meso/submesoscale turbulence that produces the vertical velocities. The diversity of
322 vertical flow behavior is visually illustrated by snapshots of model vertical velocities (Figs. 1, 2,
323 3, 4, 5) and confirmed by their spectral distribution of variance (Fig. 6a,b).

324 In the LMX region, the displayed vertical section was chosen so as to cross the Gulf Stream
325 (Fig. 2). In this region the EKE is about ten times higher than in the other regions (Fig. 7c,d),
326 the root-mean-square (rms) of w is 3 to 5 times higher (Fig. 7e,f) and intense density fronts are
327 observed both in June and December (Fig. 2). In the frontal region, the vertical velocity structures
328 extend down to 1500 m (Fig. 7e,f) depth or more, with peak $|w|$ in excess of 80 m day^{-1} . Overall,
329 this is the region with the largest vertical velocity variance at all scales and a dominant fraction of
330 this variance is found at the largest scales fitting in the study domain. Also note that LMX interior
331 vertical velocities are only weakly affected by the seasonal cycle of the near-surface submesoscale
332 activity (which is present but hardly visible in Fig. 1).

333 Compared to the LMX region, the AZO region is a lot less energetic (Fig. 7c,d); the isopycns
334 are flatter; and the horizontal velocities are slower. The vertical circulation is by far the weakest
335 of all four regions (Fig. 7e, f and 6) and exhibits limited seasonal changes. Vertical velocities are
336 organized into structures whose size is intermediate (smaller than in LMX but larger than in OSM
337 and to a lesser extent REK) as readily apparent from the inspection of fields in the physical space
338 and also from the spectral distribution of w variance (Fig. 6): in the range of scales larger than 10
339 km the w spectrum is flatter (resp. steeper) than that for LMX (resp. REK and OSM). w patterns
340 in Fig. 3 also tend to be tilted with respect to the vertical axis. This is a plausible indication that
341 vertically propagating IG waves are involved in the generation of w (slanted phase lines associated
342 with near-inertial waves are found in numerous studies, e.g., Furuichi et al. 2008).

343 In the REK region, the average vertical velocity magnitude is $O(10 \text{ m day}^{-1})$ with localized
344 higher values near mesoscale structures that can reach of up to 100 m day^{-1} and tend to have a
345 large vertical extension (Fig. 1 and 4). In the physical space, w structures are frequently tilted
346 with respect to the vertical although less so than in AZO. Again this is presumably the signature
347 of near-inertial wave activity. But contrary to the AZO case, the horizontal patterns visible in w
348 fields are consistent with the structuring role of the (sub)mesoscale activity particularly during
349 summer: presence of multipolar w patterns (Lapeyre and Klein 2006b; Viúdez 2018), that could
350 be the signature of eddy-induced Ekman pumping and/or vortex Rossby waves (Mcwilliams et al.
351 2003; Buongiorno Nardelli 2013; Barceló-Llull et al. 2017), as in the left corner of Fig. 1c; elon-
352 gated filaments of elevated w (Capet et al. 2016). During winter the enhancement of mixed layer
353 submesoscale turbulence is particularly marked (Fig. 1c). Most of the fine-scale w patterns appear
354 to be confined into the mixed layer and the visual aspect of the w field differs noticeably on ei-
355 ther side of the mixed layer base. On the other hand, w increases significantly in magnitude from
356 summer to winter (Fig. 7e,f). In terms of spatial scales summer w have a clear mesoscale domi-

357 nance with a peak around 50-100 km wavelength. For winter w , the role of the mesoscale is less
358 prominent while the contribution associated with submesoscales is strongly reinforced (Fig. 6).

359 Vertical velocities in the OSM region share many similarities with those of REK: magnitude is
360 $O(10 \text{ m day}^{-1})$; flatness of the w power spectrum in the mesoscale range 50 – 100 km; importance
361 of the near-surface submesoscales particularly during the wintertime; modest indication of vertical
362 tilt. The main difference between the two regions is the greater degree of w continuity across the
363 mixed layer and upper thermocline in winter, presumably as a consequence of very low upper
364 ocean stratification in the OSM region (Fig. 7b).

365 4. Omega reconstruction of the vertical velocity fields

366 a. Baseline skill assessment

367 The skills of the omega reconstructions vary greatly depending on the region and season as illus-
368 trated qualitatively (resp. as quantified) in Figs. 2-5 (resp. in Fig. 8). Fig. 8 represents the spectral
369 coherence between the model w and reconstructed ω , i.e., the degree of co-variance between them
370 as a function of scale. The scales and wavelengths above which the spectral coherence is larger
371 than 0.6 for the QG and NG inversion are listed in table 1 along with the fraction of w variance
372 retained at scales larger than that threshold.

373 In general, omega reconstructions perform best at scales $\gtrsim 10 – 20 \text{ km}$. The energetic mesoscale
374 structures are better reproduced and spectral coherence drops rapidly at scales $\lesssim 2 – 10 \text{ km}$, i.e.,
375 the omega reconstruction are not well-suited in the submesoscale range. This is particularly well
376 illustrated by the LMX region where spectral coherence reaches levels close to 1 above 20 km scale
377 but drops below 0.6 around 7 – 8 km (Table 1). On the other hand, there is relatively limited w
378 variance at fine-scale. Thus, the overall quality of the reconstructions is manifest for the randomly

379 chosen situation shown in Fig. 2 where both the intensity and lateral/vertical extension of the w
380 poles are well reproduced. Overall, 80 – 90% of the w signal is captured with a coherence of 0.6
381 or higher in LMX.

382 Wintertime OSM is a notable exception where coherence levels remain elevated down to 3 km
383 scales, particularly when ageostrophic effects are accounted for (see below). As in LMX, upper
384 ocean turbulent stirring and ageostrophic secondary circulations reach down to depths of 300 – 500
385 m in this region but the deformation radius is much smaller than in LMX and the stratification is
386 particularly weak. The w field is thus organised in fine-scale structures that are frequently several
387 hundred meters thick in the vertical (Fig. 5), many of which are well captured by the omega
388 reconstruction.

389 In the REK region, the omega equation reproduces adequately some of the stronger and larger
390 vertical velocity structures organized in alternated bands of upward and downward velocity inten-
391 sity (Fig. 4). As for the finer slanted structures visible in both seasons but more intense in winter
392 they are almost completely missed. The spectral coherence peaks for scales of ~ 10 km with lower
393 coherence for smaller and also larger scales. This might arise because vertical velocities at large
394 scale are driven by other dynamical processes associated with the terms not retained in our omega
395 reconstructions such as Ekman and inertial pumping.

396 Finally, in agreement with the visual impression drawn from Fig. 3, omega reconstructions per-
397 form very poorly for wintertime AZO with spectral coherence systematically below 0.5. Includ-
398 ing ageostrophic effects has virtually no impact on the reconstruction skill for the AZO region as
399 clearly illustrated in Fig. 3.

400 More generally, including the ageostrophic terms makes a significant difference for the LMX
401 and wintertime OSM reconstruction only (the scale where the 0.6 coherence threshold is found
402 decreases by up to 20% for these cases). We relate this to the fact that high Rossby number

403 dynamics is prevalent in both regions albeit for different reasons. In the LMX sectors, the frontality
404 of the Gulf Stream leads to intense turbulent stirring by the mesoscale field. In the OSM sector
405 deep mixed layers in winter lead to intense submesoscale activity whose influence reaches to
406 great depths owing to the reduced subsurface stratification. Conditions resembling those found for
407 winter OSM also exist in the REK region in winter but, in this latter case, the modest stratification
408 present around 200 m depth (Fig. 7b) seems sufficient to isolate the interior circulation from the
409 influence of the near-surface dynamics and thwart ageostrophic effects, hence the limited increase
410 in coherence between ω_{QG} and ω_{NG} in Fig. 8.

411 *b. Sensitivity to temporal averaging*

412 An important limitation of the omega reconstructions presented in the previous section may
413 arise from the role played by IG waves. This role cannot be captured by the forcing terms we
414 retained for the expression of \mathbf{Q} in the QG and NG reconstructions which ignores the material rate
415 of change of the thermal wind imbalance (\mathbf{Q}_{dr} in 10). Using daily averages tends to reduce the
416 effects of these processes, particularly where the inertial period is close to 24 h (at 30° latitude),
417 but does not eliminate them. It is unclear whether the IG wave and subinertial quasi-balanced
418 flow contributions to w should be separated (see discussion section) but the behavior of the omega
419 reconstruction as a function of the temporal scale content of the forcing term $\nabla \cdot \mathbf{Q}$ is of practi-
420 cal as well as theoretical interest. This behavior is explored by increasing the degree of temporal
421 averaging that is performed prior to the computation of the omega reconstruction right-hand side.
422 All simulated fields are averaged similarly, including w_{model} . The expectation is that more tem-
423 poral averaging will reduce the amount of variance associated with the w field to be reconstructed
424 but improve the skill of the omega reconstruction for that low-passed w . The existence of such a
425 trade-off is confirmed in Fig. 9 for most dynamical regimes. Fig. 9 presents the spectral coherence

426 between ω_{NG} and w_{model} for larger (10 – 25 km) and finer (3 – 10 km) scales as a function of the
427 remaining variance ratio $Var(< w >_t)/Var(w)$, where $< \cdot >_t$ is the low-pass temporal averaging
428 whose length is varied from 1 day (standard output for that study) and 10 days. Results are shown
429 for ω_{NG} but only minor differences were found with ω_{QG} .

430 For all regions except LMX an optimum in spectral coherence is found for time-averaging longer
431 than 1 day, both for the large scales (10 – 25 km) and the fine scales (3 – 10 km). The averaging
432 period associated with this optimum is between 2 and 5 days. As anticipated, spectral coherence
433 improvement comes at the expense of a loss of reconstructed w variance. In several cases the loss
434 of w variance is less than 25%: REK, AZO and OSM for the large scales and REK for the fine
435 scales during summer; OSM for the large scales during winter. Particularly for this latter case the
436 spectral coherence improvement is substantial and 2-5 day averaging seems justified. Conversely,
437 the most dramatic improvement in (ω_{NG}, w) spectral coherence seen in the AZO region (winter,
438 10 – 25 km scales, 5-day averaging) has a major effect on the retained ω_{NG} variance (only 37% of
439 the original w variance) and may be of limited utility in practice.

440 *c. Discretization errors*

441 We also wish to draw the reader’s attention on the delicacies of the omega inversion and the
442 implications these delicacies have on the estimation of vertical velocities. To do so we attempt to
443 minimize reconstruction errors. In addition to imposing perfect boundary conditions by applying
444 w_{model} at the edges of our domain, we also compute a “perfect” right-hand side $\nabla \cdot \mathbf{Q}_\dagger$ to be used
445 in the elliptic inversion (see section 2b). The resulting vertical velocity estimate ω_\dagger^* found as a
446 numerical solution is associated with minute errors, on average 3 % with the solving parameter
447 choices we pass to MUDPACK. These errors result from 1) the imperfect convergence of the
448 elliptic solver and 2) the imperfect boundary condition at the ocean surface.

449 To gain insight into the sensitivity of the elliptic inversion, variant ω_{\dagger}^* were also computed by
 450 employing a discretization scheme alternative to (15) to calculate $\nabla_h^2 w_{model}$ in (14):

$$\frac{\partial^2 w}{\partial x^2} \Big|_i = \frac{1}{2\Delta x} \left[\frac{(w_{i+2} - w_i)}{2\Delta x} - \frac{(w_i - w_{i-2})}{2\Delta x} \right] \quad (16)$$

451 Both schemes are consistent, centered, and second order in accuracy. They only differ by the
 452 length of their stencil (3 or 5 points).

453 We find that the discretization choice has a moderate but significant impact. In the LMX region
 454 in June for instance the use of the scheme (16) to compute the “perfect” rhs produces relative w er-
 455 rors in excess of 12 %, to be compared with the minimal convergence errors of ~ 3 % with scheme
 456 (15). The elevated error figure obtained with the second scheme helps place realistic limits to verti-
 457 cal velocity estimation attempts and draws the attention on the fact that minute errors/uncertainties
 458 on the rhs of the omega equation can have significant impacts on the reconstructed vertical veloc-
 459 ities.

460 *d. Sensitivity and errors due to boundary conditions*

461 Finally, an important source of error when solving the omega equation is the choice of the bottom
 462 boundary condition. As numerous studies have pointed out (Allen and Smeed 1996; Rudnick
 463 1996; Pascual et al. 2004) ω is not very dependant on the lateral boundary conditions but the
 464 form of the BBC and the depth where it is applied can have a strong impact on the solution of
 465 the equation (Pidcock et al. 2012; Rudnick 1996). Two types of BBCs are generally used, the
 466 Dirichlet condition $w = 0$ or the Neumann condition $\partial w / \partial z = 0$. A third one was proposed by
 467 Rudnick (1996): to limit the influence of the boundary condition on the solution, the vertical grid
 468 was extended below the depth where observations were available. Over the depth range with no
 469 observations $\nabla \cdot \mathbf{Q}$ was simply assumed to be zero. In practice, this led Rudnick (1996) to shift

470 the bottom boundary from 400 m (where the deepest observation was available) to 2524 m depth
471 where a Dirichlet BBC ($w = 0$) was imposed.

472 To assess the impact of the BBC on the solution we compare the errors obtained for Dirichlet and
473 Neumann conditions and for different domain extensions, with the bottom boundary depth z_{bottom}
474 ranging from 150 m to 1600 m (Fig. 10). This is done in the four regions and for the two seasons.
475 We also test the boundary condition proposed by Rudnick (1996) with two different depths (400
476 m and 800 m) below which $\nabla \cdot \mathbf{Q}$ is assumed to be zero down to 800 m and 1600 m respectively.

477 In this section, the omega reconstruction is solved using $\nabla \cdot \mathbf{Q}_\dagger$ forcing computed as described in
478 section 2b so relative errors exceeding a few percents can only be due to boundary conditions.

479 Figure 10 shows the relative errors of omega reconstructions made at the reference depths z_a
480 when different boundary conditions are applied. The errors at depth z_a are horizontally and tem-
481 porally averaged over the entire reconstruction domain on the horizontal and over the 11 consec-
482 utive daily model outputs. The relative error field can be quite large, generally in excess of 0.5
483 for domain depths shallower than 500 m, despite a good agreement in w and ω patterns. This is
484 generally consistent with the findings of several past studies (Pinot et al. 1996; Allen et al. 2001;
485 Rixen et al. 2003).

486 Relative errors varies with z_{bottom} in a relatively simple and intuitive way: deeper z_{bottom} sys-
487 tematically translates into weaker errors with Neumann or Dirichlet boundary condition. More
488 precisely, errors tend to stabilize around 20% when z_{bottom} greater than 1000 – 1500 meters are
489 used (Table 2), with the notable exception of REK for which relative errors are $\sim 0.3 – 0.4$ and
490 still decreasing at $z_{bottom} = 1600$ m. The most evident manifestation of error saturation behavior
491 is found for LMX and Neumann boundary conditions, with a threshold around $z_{bottom} = 700$ m
492 beyond which little improvement is observed. More generally we note that: the quality of the
493 reconstruction can vary from low to high depending on the choice being made for the depth of the

494 boundary condition; except in the LMX region the Neumann and Dirichlet boundary conditions
495 give relatively similar results; the use of a buffer region to increase the domain depth following
496 Rudnick (1996) can ameliorate the reconstruction skill and provide an optimum over all possible
497 choices but the improvement is generally marginal. Estimating the relative error as a volume-
498 average over the whole water volume above the depth where the boundary condition is applied
499 paints a more complicated picture. For instance, in a number of situations, reconstruction errors
500 are found to increase when the location of the boundary layer deepens beyond certain thresholds
501 (not shown). We relate this to the fact that deep vertical velocities can be particularly intense owing
502 to processes not properly resolved by our implementations of the omega reconstructions (IG
503 wave activity, flow-topography interaction).

504 In an attempt to gain further insight, we use vertical mode decomposition to characterize the
505 vertical structure of the w field. Consider a situation where w would project onto a single mode,
506 for instance baroclinic mode 2. In that case, w systematically vanishes at the zero crossing of
507 G_2 and a Dirichlet boundary condition at that depth would not introduce any error. A perfect
508 Neumann boundary condition would similarly exist at the zero crossings of F_2 . There are several
509 potential obstacles preventing this from happening. Most importantly, vertical velocity tends to be
510 associated with fine horizontal scales and this tends to be also true in the vertical (Fig. 3-5). The
511 vertical mode decomposition of w generally involves many modes, and in most cases, less than
512 half of the w signal is explained by the sum of the first three vertical modes (Fig. 12, annex A1). It
513 is therefore impossible to choose a fixed depth where the dominant F_n or G_n are zeros. The LMX
514 regime is an exception where the w vertical structure projects to a large extent onto the first three
515 baroclinic modes (Fig. 12). For LMX the smallest reconstruction errors (volume averaged) are
516 obtained for a Neumann boundary condition placed at approximately 750 m depth (not shown),
517 *i.e.*, the depth below which errors evaluated at a single depth ($z_a = 220$ m) tend to reach a plateau

518 around $0.2 - 0.25$ (Fig. 10a,e). The 750 m value falls in the depth range where F_1 and F_3 are
519 very close to zero (Fig. 11a). The link between the vertical mode's structure and the effect of
520 z_{bottom} on the reconstruction skill is far less clear for the other three regions. We attribute these
521 inconsistencies to the limited role played by the gravest baroclinic modes in AZO, REK and OSM
522 (Fig 12).

523 To better characterize the reconstruction errors due to imperfect (bottom) boundary conditions,
524 we compute an alternative omega reconstruction ω_{NG}^* using perfect w_{model} information at the
525 boundaries (see section 2b). Differences between ω_{NG}^* and w_{model} , can only arise from the simpli-
526 fication made to \mathbf{Q} in the NG inversion (that is, considering \mathbf{Q}_{dr} , \mathbf{Q}_{th} and \mathbf{Q}_{dm} as null). They range
527 from ~ 1 to ~ 5 m day $^{-1}$ depending on the region and season. They are typically one to three times
528 as high as errors associated with a Dirichlet boundary condition at 1600 m (Table 2) and generally
529 lower than the ones associated with a Dirichlet boundary condition at 500 m (Fig. 10). Discrepan-
530 cies in spectral distribution between ω_{NG}^* and w_{model} are much reduced compared to those for ω_{NG} .
531 This is particularly true for the scales below 1 km (Fig. 6c and 6d). A similar skill improvement
532 is noticeable for the spectral coherence (Fig. 8). A significant fraction of the fine-scale vertical
533 motions in the upper ocean is thus directly linked to unidentified processes active below 1600 m.
534 Consistent with previous studies (e.g. see Jouanno et al. 2016) flow-topography interactions is a
535 likely candidate, which would pose serious difficulties if it were to be explicitly incorporated into
536 the omega reconstruction approach (inversion would need to be performed for the whole ocean
537 depth range with the knowledge of the vertical velocity at the ocean floor $w = -\mathbf{u}\nabla h$). We do not
538 see any prospect for this but this source of errors should be kept in mind.

539 **5. Discussion**

540 Since the 1980s a large number of studies have focused on inferring oceanic vertical velocities
541 through more or less elaborate forms of the omega equation. Most of them have been applied
542 to local *in-situ* data, in which the sources of errors are difficult to identify and quantify (see the
543 bibliography table SI1). In some instances the reconstructed vertical velocity field has been used
544 to qualitatively interpret concomitant tracer distributions (Pollard and Regier 1992; Rudnick 1996;
545 Martin and Richards 2001; Allen et al. 2005; Ruiz et al. 2009; Pallàs-Sanz et al. 2010; Rousselet
546 et al. 2019). The uncertainty on reconstructed w is an important limitation when doing so (also note
547 that the vertical tracer distribution at any given time reflects the past history of vertical advection
548 - and mixing). w velocities are now increasingly being used quantitatively, e.g., as inputs to tracer
549 models (Pascual et al. 2015; Barceló-Llull et al. 2016).

550 Model studies have addressed the various sources of errors involved and the ways to reduce their
551 impact with a general focus on three main issues: i) the merits of more complete versions of the
552 omega equation; ii) the sensitivity to particular choices of boundary conditions when solving the
553 omega equation; iii) the errors induced by the lack of resolution, homogeneity, and synopticity of
554 in situ sampling when the omega reconstruction is applied to real ocean observations (see SI1).
555 These model-based assessments of ω reconstructions were typically performed in simplified flow
556 conditions, composed of a single coherent eddy or front, with a marked preference for the early
557 stages of destabilisation of baroclinic zones (Strass 1994; Pinot et al. 1996; Allen et al. 2001;
558 Rixen et al. 2003; Viúdez 2018). More recently, the omega equation has been used to determine
559 oceanic vertical velocity fields over larger domains and extended time periods from observation-
560 based gridded reconstructions of temperature and salinity fields (Pascual et al. 2015; Barceló-Llull
561 et al. 2016; Buongiorno Nardelli et al. 2018). The resulting ω fields can subsequently be used

562 to estimate vertical fluxes and this has been attempted for several biogeochemical tracers, over
563 different relevant time scales.

564 Overall, a general assessment of the skills and limitations of the omega reconstruction is lacking.
565 The present study is an effort in that direction that mainly pertains to i) and ii) and we deliberately
566 excluded errors of the type iii). Although they pose important and perhaps leading-order limi-
567 tations to w reconstructions from observations, this type of errors could be significantly reduced
568 by observing the ocean at higher resolution in specific regions of interest and combining these
569 observations with fine-scale remotely sensed information and model integrations. Optimal ways
570 to produce such combinations may involve relocation strategies as proposed in Rixen et al. (2001)
571 and Pascual et al. (2004). Errors i) and ii) pose different type of challenges that have not received
572 much attention. We have followed the steps of Strass (1994) whose analyses of the omega re-
573 construction skills included a scale-dependant coherence diagnostic. An originality of our study
574 is to estimate the fidelity of w reconstructions for fully turbulent realistic flows. Several findings
575 reported in the previous section deserve further discussion.

576 *On the limited skills of omega reconstructions at fine-scale*

577 First, the important limitations to the omega reconstructions found at relatively fine-scale, de-
578 spite the absence of type iii) errors may seem surprising. Some remarks are thus in order. An
579 important motivation for this work is the representation of vertical tracer fluxes between the sur-
580 face and interior of the ocean. Therefore we focused on vertical velocities tens of meters below
581 the mixed layer. At such depths, vertical velocity spectra are significantly more red than closer
582 to the surface where whiter spectra have been reported (Ponte and Klein 2013; Klein et al. 2008).
583 This means that modest levels of variance remain in the scale range where coherence has dropped

584 down. Conversely, a large fraction of w variance ($> 60\%$ for all regions and seasons) is found in
585 the scale range where coherence is above 0.6 (table 1).

586 This being said, the coherence drop off at scales below 10 km is interesting in itself and deserves
587 further discussion. The only regime for which significant skill is being obtained into submesoscale
588 range is winter OSM, which clearly stands out in terms of coherence (Fig. 8). This is also the
589 only regime for which the influence of surface intensified frontal turbulence is found to penetrate
590 down to the depth of analysis ($z_a = 380$ m), owing to extremely weak subsurface stratifications.

591 This regime is also the one for which the NG reconstruction provides the largest improvement
592 over the QG reconstruction. The lack of reconstruction skills generally found at submesoscale is
593 therefore not due to a particular difficulty at capturing vertical velocities associated with frontal
594 turbulence. Instead, we attribute reconstruction errors to the imperfection of the BBC used to
595 invert the elliptic omega equation and to the neglect of fluctuations in thermal wind imbalance due
596 to partly or fully unbalanced fast processes such as inertial gravity waves. The former source of
597 error is identified and quantified explicitly while the importance of the latter is inferred indirectly.

598 Further elaboration on these two error sources follow.

600 The boundary conditions impact omega reconstructions over the entire study domain owing to
601 the elliptic nature of the omega equation. It has been known for a long time that the solution can
602 be improved by properly choosing the type and location of the BBC. We explored the possibility
603 that the BBC strategies could be rationalised based on vertical mode decompositions. Although
604 one exception was found in the Gulf Stream region, vertical velocities tend to project onto a large
605 number of vertical modes (Fig. 12) and no ideal positioning of the BBC can be chosen a priori.

606 Pushing the BBC position z_{bottom} toward greater depths leads to reconstruction improvements even
607 beyond 1500 m. This is not feasible when observations are used to perform omega reconstructions
608 and the typical choices made in this situation ($z_{bottom} \sim 500$ m see review table SI1) fall in the range

608 where errors are most sensitive to z_{bottom} . In the Gulf stream region, vertical velocities associated
609 with upper ocean frontal dynamics extend deep into the water column and tend to project mainly
610 onto the first 3 vertical modes (Fig. 12). These properties are qualitatively consistent with the fact
611 that, for the LMX domain, the Neumann BBC outperforms the Dirichlet BBC and that the relative
612 error curve as a function of BBC depth levels off for z_{bottom} below ~ 700 m. Similar behaviors
613 may presumably be observed in other western boundary regions and the Antarctic Circumpolar
614 Current region. Finally, note that, given a depth down to which data is available to feed an omega
615 reconstruction, the so-called telescopic method developed by Rudnick provides at best a marginal
616 improvement over the classical Dirichlet or Neumann boundary conditions.

617 The presence of inertia-gravity waves near and beyond the drop-off scale is not accounted for
618 as a source of w (in our case, neglecting the forcing term \mathbf{Q}_{dr} was due to limitations on the model
619 outputs at our disposal but including this term for real ocean situations would pose extremely strin-
620 gent if not impractical requirements on sampling strategies). The AZO region is the one where
621 inertia-gravity waves are suspected to play the largest role, if only because balanced turbulence is
622 very weak there. There may be other more subtle consequences of the inertia-gravity wave activity
623 on the omega reconstruction we have presented. For instance, REK has more w variance in winter
624 but coherence between ω_{NG} and w_{model} is degraded at that season compared to summer. Although
625 seasonal changes appear comparatively unimportant in the LMX region, a slight coherence degra-
626 dation occurs in winter: winter coherence for the NG reconstruction is ~ 0.1 lower than in summer
627 over the scale range $2 - 8$ km (gaps are smaller at larger scale but the degradation is noticeable up
628 to 20 km). Again, signs of enhanced NIW activity for the winter analysis period compared to the
629 summer one suggest that near-inertial waves are responsible for this degradation.

630 For completeness, two other possible sources of omega reconstruction errors are listed here.
631 Daily averaged variables are used to compute the forcing terms which are nonlinear combinations

632 of these variables. This means that Reynold-type forcing terms should formally be included due
633 to rapid (intra-day) fluctuations in u , v and ρ . Kinetic energy corresponding to motions with tem-
634 poral scales below 1 day is very low in simulations with $dx \sim 2$ km and we have assumed that this
635 is a small effect. It would need to be verified that the same applies when *in-situ* observations are
636 low-passed filtered prior to computing rhs terms for a real ocean omega reconstruction. Forcing
637 terms associated with mixing of momentum and buoyancy have also been ignored. This is gen-
638 erally considered as a valid approximation sufficiently far from the mixed layer while this source
639 of error is expected to increase at shallower depth (see below for more elaboration on this) in the
640 context of ocean tracer dynamics. Although generally consistent with our findings the latest results
641 of Qiu et al. (2020) cast some doubts on the smallness of w -forcing by buoyancy and momentum
642 diffusion. In a western boundary context, this term is found to be comparable to w -forcing by
643 ageostrophic kinematic deformation and stronger than w -forcing by thermal wind imbalance de-
644 formation or thermal wind imbalance tendency, even well into the ocean interior (see their figure
645 4). This issue would however need to be scrutinized based on an explicit computation of the mixed
646 effect on w . Qiu et al. (2020) infer this term as a residual which therefore lumps together various
647 contributions including that due to BBC errors. Model output limitations have not allowed us to
648 undertake this.

649 *On the consequences of limited reconstruction skills at fine-scales for tracer dynamics*

650 Ultimately, what matters in most applications is not vertical velocity per se but the vertical
651 transport of oceanic properties, for instance upward fluxes of dissolved iron enriching the euphotic
652 layer in the Southern Ocean (Nicholson et al. 2019), or downward fluxes of organic material filling
653 the ocean interior and having key implications on O2 consumption and distribution (Boyd et al.
654 2019). Vertical tracer fluxes arise from vertical motions because upward and downward motions

655 are, on average, associated with distinct tracer values. We find it useful to discuss three types of
656 limit cases in which this can occur and where the limitations of the omega reconstruction described
657 above may be more or less problematic depending on the scenario. To this end, we consider a
658 nutrient-like tracer τ whose concentration gradient is directed downward. The same reasoning
659 would apply to tracer with an upward gradient (e.g., phytoplankton or dissolved oxygen).

660 An important distinction between two types of limit cases can be made depending whether
661 baroclinic instability (BCI) plays an important role or not.

662 Case 1

663 When BCI is important, turbulent vertical motions are strongly constrained by the fact that
664 $\langle w'b' \rangle > 0$, where b refers to buoyancy, $\langle \cdot \rangle$ is a low-pass averaging operator and the prime notation
665 refers to deviations from this average. BCI can thus contribute to transport a tracer τ vertically
666 provided that the distributions of τ and b are correlated. Far enough from the surface in the ocean
667 interior available potential energy (APE) release is mainly achieved through mesoscale velocities
668 (Lapeyre et al. 2006; Capet et al. 2016). Unless the correlations of τ and b were weak at mesoscale
669 and strong at submesoscale, the proper description of mesoscale w would thus suffice to capture
670 the dominant part of $\langle w'\tau' \rangle$. Typically, correlations between a tracer τ and buoyancy exist owing
671 to processes acting at large-scale, although large decorrelation can ensue from biological reactions
672 (e.g. for oxygen and nitrate). Correlations are then transferred down to smaller scales by turbulent
673 cascades and decorrelation between buoyancy and τ is preferentially found at the finest scales
674 (see discussion in Fox-Kemper et al. 2013, and references therein). Therefore, we expect omega
675 reconstructions to be useful in this case despite the limitations we have described.

676 We now turn to the situation where vertical motions are not constrained by baroclinic instabil-
677 ity and result instead from, e.g., fossil mesoscale/submesoscale turbulence and/or internal wave
678 activity. In this situation, any water parcel has a well defined reference depth position z_{ref} (quite

679 independent of horizontal position) around which it may oscillate and an additional process must
680 be invoked for these oscillations to produce τ vertical/diapycnal fluxes. We take a Lagrangian
681 viewpoint and consider $\delta z = \int_t w dt$, the vertical displacement of a water parcel from its equilib-
682 rium position and we distinguish two limit cases illustrated in Fig. 13.

683 Case 2

684 Let us consider the situation in which a sink term for τ is located in the euphotic layer where pho-
685 tosynthesis draws τ levels down (Fig. 13 a and b). The τ anomalies are schematically represented
686 for a mesoscale (panel a) and a submesoscale (panel b) upward oscillation where the amplitude
687 of the oscillations have been chosen so as to reflect the distribution of w variance found in the
688 ocean interior for all regimes ($\delta z^m > \delta z^s$). Because $\delta z^m > \delta z^s$ and also because the mesoscale
689 excursions last on average longer the photosynthesis sink term for τ is more effective at mesoscale
690 than it is at submesoscale. The tracer biogeochemistry acts as a low-pass filter and a representa-
691 tion of fine-scale vertical motions is unessential in the determination of tracer vertical fluxes. The
692 deficiencies of the omega equation evidenced in this study should thus have limited consequences
693 on the determination of tracer vertical fluxes, e.g., as performed in Barceló-Llull et al. (2016).

694 Note that the depth where the mean gradient of τ resides is a parameter that is potentially im-
695 portant to consider. If this mean gradient were located very close below the mixed layer base,
696 the region where the photosynthesis sink term is active would be closer and the relative amplitude
697 of submesoscale vertical motions (compared to that for the mesoscale) would be larger, hence a
698 stronger influence of submesoscale processes.

699 Case 3

700 The last limit case is the one where the only possible modification of the tracer concentration
701 attached to water parcels is through (vertical/diapycnal) mixing with surrounding water masses
702 when and where the underlying flow structure produces local shear enhancement. Shear being

703 proportional to spatial derivate of the velocities, fine-scale vertical motions can potentially have
704 a major contribution on τ vertical/diapycnal fluxes despite their lesser magnitude relative to those
705 at mesoscale. Reconstructed vertical velocities have a general bias toward overly weak variance
706 that is particularly pronounced at scales below 30 to 50 km, depending on the regime. This bias
707 and its impact on the determination of tracer fluxes may be amenable to statistical corrections
708 if omega reconstructions for case 3 type problems turn out to be of importance. The impact of
709 (very) fine-scale motions on tracer dynamics is presently accounted for by shear-driven mixing
710 parametrizations (Gregg 1989; Polzin et al. 1995 and references therein) which represent the ef-
711 fect of internal gravity wave. There are evidences that different forms of heterogeneities such as
712 submesoscale flows affect internal wave breaking (Whitt and Thomas 2013; Avicola et al. 2007)
713 but the utility of the omega equation to incorporate these effects in our ocean representations is
714 presently unclear.

715 **6. Conclusions**

716 The ever expanding coverage of observational networks supplemented by satellite observations
717 with increasing spatio-temporal resolution like the upcoming SWOT mission (d' Ovidio et al.
718 2019) was a strong motivation for this work. In the coming years we may be able to estimate
719 vertical fluxes more accurately and at finer scale than ever before. Today, the most common
720 tool to infer vertical velocity is the omega equation. In this paper we explored the ability of the
721 most common configurations adopted to solve this equation to provide information on the vertical
722 circulation at different horizontal length scales. The main novelty of our work is to have used a
723 broad variety of regimes which helped unravel the diversity of reasons underlying the errors in
724 omega reconstructions of w fields, depending on the regional dynamics.

725 Generally the adiabatic omega reconstruction gives good results for mesoscale vertical circula-
726 tion, typically for structures with horizontal scales larger than 10 km. These structures tend to be
727 associated with a large part of the w variance, although their relative importance and the precise
728 skills of the omega reconstruction at such scales depend on the local dynamics. Omega reconstruc-
729 tion skills degrade strongly in the submesoscale range. This degradation is manifest both in terms
730 of reduced variance levels and lack of coherence when comparing reconstructed and true vertical
731 velocities. There are two main reasons explaining these findings: the overall weakness of (true)
732 w variance levels below the surface boundary layer in the submesoscale range; the coexistence in
733 that range of several processes contributing to vertical motions, not just frontal turbulence but also
734 inertia-gravity waves which force vertical velocities through terms that are generally not accessi-
735 ble. Overall, the best reconstructions are thus observed in conditions characterised by energetic
736 turbulence and/or weak stratification (such that near-surface frontal processes are felt well into
737 the ocean interior). In particular we observed the best results in regimes for a western boundary
738 (LMX with elevated EKE) and wintertime Porcupine Abyssal Plain (OMS, very weak water col-
739 umn stratification). Conversely the weak vertical flow found in the AZO region where EKE is low
740 and subsurface stratification is relatively strong is poorly captured by the omega approach.

741 Implications on the role of submesoscale vertical velocities and whether/how to integrate them
742 into our representations of property exchanges in the ocean interior will require further elabora-
743 tion. Numerous studies have highlighted the strong impact frontal submesoscale turbulence can
744 have on physical and biogeochemical fluxes (Lapeyre et al. 2006; Klein et al. 2008; Thomas and
745 Ferrari 2008; Capet et al. 2008). For a given tracer τ , this is only true to the extent that the mean
746 distribution of τ exhibits vertical contrasts sufficiently close to the surface where frontal activity
747 remains important. How close depends on the background environment and in particular on the

748 upper ocean stratification. The Surface Quasi-Geostrophic (SQG) theory is useful to qualitatively
749 apprehend this dependance (Lapeyre et al. 2006).

750 In most past studies dealing with vertical velocities a quasi geostrophic version of the omega
751 equation was used, but more recently, several authors have included higher order terms. For this
752 reason, we also evaluated the possible improvements obtained by using a more elaborate version of
753 the adiabatic equation compared to the simple quasi geostrophic formulation. NG reconstructions
754 that include ageostrophic forcing terms due to flow deformation leads to improved reconstructions.

755 The improvements are substantial only in conditions where near-surface frontal processes (i.e.,
756 submesoscales) are important. This finding has important implications in the context of efforts
757 aimed at estimating vertical velocities in the real ocean because the adiabatic QG reconstruction
758 only requires the knowledge of the density field and of the sea surface height (or a reference level
759 of no motion).

760 The consequences of various numerical choices on the reconstruction skills have been investi-
761 gated in this work. Choices made for the bottom boundary condition have a major impact. Pushing
762 the boundary condition as deep as possible is the only rule of thumb that can be provided. The
763 relative performance of the Dirichlet versus Neumann boundary conditions cannot be anticipated
764 a priori while the BBC tweak proposed by Rudnick (1996) offers at best marginal improvements.
765 Obviously, omega reconstruction skills will worsen when it is applied to real observations with
766 lesser spatial resolution (for the ocean interior data), synopticity issues and instrumental errors.

767 APPENDIX

768 **A1. Baroclinic mode decomposition**

769 To support the results in section 4d, we use a normal mode decomposition to establish possible
770 relations between the depth of the vertical boundary condition and the error committed when
771 estimated w with ω . The eigenfunctions are solution of the eigenvalues problem:

$$\frac{\partial^2 G_n}{\partial z^2} + \frac{N^2}{c_n^2} G_n = 0 \quad (\text{A1})$$

772 or

$$\frac{\partial}{\partial z} \left(\frac{1}{N^2} \frac{\partial F_n}{\partial z} \right) + \frac{1}{c_n^2} F_n = 0 \quad (\text{A2})$$

773 with the boundary conditions:

$$G_n = 0 \text{ at } z = 0 \text{ and } z = -H \quad (\text{A3})$$

$$\frac{\partial F_n}{\partial z} = 0 \text{ at } z = 0 \text{ and } z = -H \quad (\text{A4})$$

775 where the vertical velocity modes G_n and the pressure modes F_n are related through the relation,

$$F_n = \frac{\partial G_n}{\partial z}. \quad (\text{A5})$$

776 Vertical variability can then be projected onto the vertical modes F_n and G_n so that,

$$p(x, y, z, t) = \sum_{n=0}^{\infty} \tilde{p}_n(x, y, t) F_n(z) \quad (\text{A6})$$

$$w(x, y, z, t) = \sum_{n=0}^{\infty} \tilde{w}_n(x, y, t) G_n(z), \quad (\text{A7})$$

778 with \tilde{p}_n and \tilde{w}_n the modal amplitudes of the pressure and vertical velocity respectively.

779 To investigate more thoroughly the contribution of the vertical modes to the vertical velocity
780 signal, we expressed the vertical velocity by the projection on the three firsts vertical modes and a
781 residue,

$$w(x, y, z, t) = \sum_{n=1}^N \tilde{w}_n(x, y, t) G_n(z) + \varepsilon. \quad (\text{A8})$$

782 ε was estimated for $N = [1 : 3]$. The number of profiles where ε/w was lower than 0.5, that is to
783 say that more than half of the w dynamics is explained by the first one, two or three vertical modes,
784 was estimated (Fig. 12).

785 Note that in Figure 11, F_n and G_n are calculated for a mean stratification that is obtained using
786 spatial averaging over the entire region and time averaging over 11 daily model outputs. However
787 they do not differ substantially from the modes calculated on each point and used to infer modal
788 amplitudes (Sec. 2c).

789 *Acknowledgments.* This work has been partly supported by the NASA/CNES Tosca project
790 BIOSWOT. Alice Pietri was supported by a CNES postdoctoral grant. The authors wish to
791 thanks the SWOT cal/val team for providing an stimulating environment in the development
792 of our study. The NATL60 simulation can be accessed at [https://meom-group.github.io/swot-](https://meom-group.github.io/swot-natl60/access-data.html)
793 [natl60/access-data.html](https://meom-group.github.io/swot-natl60/access-data.html). The authors wish to thank two anonymous reviewers for their comments
794 and suggestions for improving the paper.

795 References

796 Adams, J. C., 1989: mudpack: Multigrid portable fortran software for the efficient solution of
797 linear elliptic partial differential equations. *Applied Mathematics and Computation*, **34** (2), 113–
798 146, doi:10.1016/0096-3003(89)90010-6.

799 Allen, J. T., and D. Smeed, 1996: Potential Vorticity and Vertical Velocity at the Iceland-Faeroes
800 Front. *Journal of Physical Oceanography*, **26**, 2611–2634.

801 Allen, J. T., D. A. Smeed, A. J. G. Nurser, J. W. Zhang, and M. Rixen, 2001: Diagnosis of
802 vertical velocities with the QG omega equation: A relocation method to obtain pseudo-synoptic

803 data sets. *Deep-Sea Research Part I: Oceanographic Research Papers*, **48** (6), 1347–1373, doi:
804 10.1016/S0967-0637(00)00085-6.

805 Allen, J. T., and Coauthors, 2005: Diatom carbon export enhanced by silicate upwelling in the
806 northeast Atlantic. *Nature*, **437**, 1–5, doi:10.1038/nature03948.

807 Amores, A., G. Jordà, T. Arsouze, and J. Le Sommer, 2018: Up to What Extent Can We Charac-
808 terize Ocean Eddies Using Present-Day Gridded Altimetric Products? *Journal of Geophysical*
809 *Research: Oceans*, **123** (10), 7220–7236, doi:10.1029/2018JC014140.

810 Avicola, G. S., J. N. Moum, A. Perlin, and M. D. Levine, 2007: Enhanced turbulence due to
811 the superposition of internal gravity waves and a coastal upwelling jet. *Journal of Geophysical*
812 *Research: Oceans*, **112** (6), 1–20, doi:10.1029/2006JC003831.

813 Balwada, D., K. S. Smith, and R. Abernathey, 2018: Submesoscale Vertical Velocities Enhance
814 Tracer Subduction in an Idealized Antarctic Circumpolar Current. *Geophysical Research Let-
815 ters*, **45** (18), 9790–9802, doi:10.1029/2018GL079244.

816 Barceló-Llull, B., E. Mason, A. Capet, and A. Pascual, 2016: Impact of vertical and horizontal
817 advection on nutrient distribution in the southeast Pacific. *Ocean Science*, **12** (4), 1003–1011,
818 doi:10.5194/os-12-1003-2016.

819 Barceló-Llull, B., E. Pallàs-Sanz, P. Sangrà, A. Martínez-Marrero, S. N. Estrada-Allis, and
820 J. Arístegui, 2017: Ageostrophic Secondary Circulation in a Subtropical Intrathermocline Eddy.
821 *Journal of Physical Oceanography*, **47** (5), 1107–1123, doi:10.1175/jpo-d-16-0235.1.

822 Barceló-Llull, B., A. Pascual, E. Mason, and S. Mulet, 2018: Comparing a Multivariate Global
823 Ocean State Estimate With High-Resolution in Situ Data: An Anticyclonic Intrathermocline

824 Eddy Near the Canary Islands. *Frontiers in Marine Science*, **5**, 1–15, doi:10.3389/fmars.2018.
825 00066.

826 Bower, A., and T. Rossby, 1989: Evidence of Cross-Frontal Exchange Processes in the Gulf
827 Stream Based on Isopycnal RAFOS Float Data. *Journal of Physical Oceanography*, **19**, 1177–
828 1190.

829 Boyd, P. W., H. Claustre, M. Levy, D. A. Siegel, and T. Weber, 2019: Multi-faceted par-
830 ticle pumps drive carbon sequestration in the ocean. *Nature*, **568**, 327–335, doi:10.1038/
831 s41586-019-1098-2.

832 Buckingham, C. E., and Coauthors, 2016: Seasonality of submesoscale flows in the ocean surface
833 boundary layer. *Geophysical Research Letters*, **43**, 2118–2126.

834 Buongiorno Nardelli, B., 2013: Vortex waves and vertical motion in a mesoscale cyclonic eddy.
835 *Journal of Geophysical Research: Oceans*, **118** (10), 5609–5624, doi:10.1002/jgrc.20345.

836 Buongiorno Nardelli, B., S. Guinehut, A. Pascual, Y. Drillet, S. Ruiz, and S. Mulet, 2012: Towards
837 high resolution mapping of 3-d mesoscale dynamics from observations. *Ocean Science*, **8**, 885–
838 901, doi:10.5194/os-8-885-2012.

839 Buongiorno Nardelli, B., S. Mulet, and D. Iudicone, 2018: Three-Dimensional Ageostrophic Mo-
840 tion and Water Mass Subduction in the Southern Ocean. *Journal of Geophysical Research:*
841 *Oceans*, **123** (2), 1533–1562, doi:10.1002/2017JC013316.

842 Buongiorno Nardelli, B., and R. Santoleri, 2005: Methods for the reconstruction of vertical profiles
843 from surface data: Multivariate analyses, residual GEM, and variable temporal signals in the
844 North Pacific Ocean. *Journal of Atmospheric and Oceanic Technology*, **22** (11), 1762–1781,
845 doi:10.1175/JTECH1792.1.

846 Buongiorno Nardelli, B., 2020: A multi-year time series of observation-based 3D horizontal and
847 vertical quasi-geostrophic global ocean currents. *Earth System Science Data*, **12**(3), 1711–1723,
848 doi:10.5194/essd-12-1711-2020.

849 Callies, J., and R. Ferrari, 2018: Baroclinic instability in the presence of convection. *Journal of*
850 *Physical Oceanography*, **48**, 45–60.

851 Capet, X., P. Klein, B. L. Hua, G. Lapeyre, and J. C. McWilliams, 2008: Surface kinetic energy
852 transfer in surface quasi-geostrophic flows. *Journal of Fluid Mechanics*, **604**, 165–174, doi:
853 10.1017/S0022112008001110.

854 Capet, X., G. Roullet, P. Klein, and G. Maze, 2016: Intensification of Upper-Ocean Submesoscale
855 Turbulence through Charney Baroclinic Instability. *Journal of Physical Oceanography*, **46** (11),
856 3365–3384, doi:10.1175/jpo-d-16-0050.1.

857 Chenillat, F., B. Blanke, N. Grima, P. J. S. Franks, X. Capet, and P. Rivière, 2015: Quantify-
858 ing tracer dynamics in moving fluids: a combined Eulerian-Lagrangian approach. *Frontiers in*
859 *Environmental Science*, **3** (June), 1–15, doi:10.3389/fenvs.2015.00043.

860 Cushman-Roisin, B., and J.-M. Beckers, 2011: *Introduction to Geophysical Fluid Dynamics*, Vol.
861 101. 2nd ed., Academic Press, 875 pp.

862 d' Ovidio, F., and Coauthors, 2019: Frontiers in fine-scale in situ studies: Opportunities during
863 the SWOT fast sampling phase. *Frontiers in Marine Science*, **6**, doi:10.3389/fmars.2019.00168.

864 D'Asaro, E. A., K. B. Winters, and R. C. Lien, 2004: Lagrangian estimates of diapycnal mixing in
865 a simulated K-H instability. *Journal of Atmospheric and Oceanic Technology*, **21** (5), 799–809,
866 doi:10.1175/1520-0426(2004)021<0799:LEODMI>2.0.CO;2.

867 Davies-Jones, R., 1991: The frontogenetical forcing of secondary circulations. part i: The duality
868 and generalization of the q vector. *Journal of the Atmospheric Sciences*, **48** (4), 497–509, doi:
869 10.1175/1520-0469(1991)048<0497:TFFOSC>2.0.CO;2.

870 Ducousoo, N., J. Le Sommer, J. M. Molines, and M. Bell, 2017: Impact of the Symmetric Instabil-
871 ity of the Computational Kind at mesoscale- and submesoscale-permitting resolutions. *Ocean*
872 *Modelling*, **120** (October), 18–26, doi:10.1016/j.ocemod.2017.10.006.

873 Ferrari, R., 2011: A frontal challenge for climate models. *Science*, **332** (6027), 316–317, doi:
874 10.1126/science.1203632.

875 Fox-Kemper, B., R. Lumpkin, and F. O. Bryan, 2013: Lateral transport in the ocean interior. *Ocean*
876 *Circulation and Climate: A 21st century perspective*, G. Siedler, S. M. Griffies, J. Gould, and
877 J. A. Church, Eds., Academic Press (Elsevier Online), International Geophysics, Vol. 103, 185–
878 209.

879 Fresnay, S., A. L. Ponte, S. Le Gentil, and J. Le Sommer, 2018: Reconstruction of the 3-D Dy-
880 namics From Surface Variables in a High-Resolution Simulation of North Atlantic. *Journal of*
881 *Geophysical Research: Oceans*, **123** (3), 1612–1630, doi:10.1002/2017JC013400.

882 Furuichi, N., T. Hibiya, and Y. Niwa, 2008: Model-predicted distribution of wind-induced internal
883 wave energy in the world's oceans. *Journal of Geophysical Research: Oceans*, **113** (9), 1–13,
884 doi:10.1029/2008JC004768.

885 Giordani, H., and G. Caniaux, 2001: Sensitivity of cyclogenesis to sea surface temperature
886 in the Northwestern Atlantic. *Monthly Weather Review*, **129** (6), 1273–1295, doi:10.1175/
887 1520-0493(2001)129<1273:SOCTSS>2.0.CO;2.

888 Giordani, H., G. Caniaux, and L. Prieur, 2005: A simplified 3D oceanic model assimilating
889 geostrophic currents: Application to the POMME experiment. *Journal of Physical Oceanog-
890 raphy*, **35** (5), 628–644, doi:10.1175/JPO2724.1.

891 Giordani, H., and S. Planton, 2000: Modeling and Analysis of Ageostrophic Circulation over the
892 Azores Oceanic Front during the SEMAPHORE Experiment. *Monthly Weather Review*, **128** (7),
893 2270–2287, doi:10.1175/1520-0493(2000)128<2270:maaoac>2.0.co;2.

894 Giordani, H., L. Prieur, and G. Caniaux, 2006: Advanced insights into sources of vertical velocity
895 in the ocean. *Ocean Dynamics*, **56** (5-6), 513–524, doi:10.1007/s10236-005-0050-1.

896 Gregg, M. C., 1989: Scaling turbulent dissipation in the thermocline. *Journal of Geophysical
897 Research*, **94** (C7), 9686–9698, doi:10.1029/jc094ic07p09686.

898 Guinehut, S., A. L. Dhomps, G. Larnicol, and P. Y. Le Traon 2012: High resolution 3-D tem-
899 perature and salinity fields derived from in situ and satellite observations. *Ocean Science*, **8**(5),
900 845–857, doi:10.5194/os-8-845-2012.

901 Hamlington, P. E., L. P. Van Roekel, B. Fox-Kemper, K. Julien, and G. P. Chini, 2014: Langmuir–
902 submesoscale interactions: Descriptive analysis of multiscale frontal spindown simulations.
903 *Journal of Physical Oceanography*, **44**, 2249–2272.

904 Helber, R. W., and R. H. Weisberg, 2001: Equatorial upwelling in the western pacific warm pool.
905 *Journal of Geophysical Research*, **106**, 8989–9003.

906 Held, I. M., R. T. Pierrehumbert, S. T. Garner, and K. L. Swanson, 1995: Surface quasi-geostrophic
907 dynamics. *J. Fluid Mech.*, **282**, 1–20, doi:10.1017/S0022112095000012.

908 Horii, T., Y. Masumoto, I. Ueki, S. P. Kumar, and K. Mizuno, 2011: Intraseasonal vertical ve-
909 locity variation caused by the equatorial wave in the central equatorial indian ocean. *Journal of*
910 *Geophysical Research*, **116**.

911 Hoskins, B. J., 1982: the Mathematical theory of frontogenesis. *Ann. Rev. Fluid Mech*, **15** (12),
912 131–151.

913 Hoskins, B. J., I. Draghici, and H. C. Davies, 1978: A new look at the ω equation. *Quarterly*
914 *Journal of the Royal Meteorological Society*, **104** (439), 31–38, doi:10.1002/qj.49710443903.

915 Isern-Fontanet, J., B. Chapron, G. Lapeyre, and P. Klein, 2006: Potential use of microwave sea sur-
916 face temperatures for the estimation of ocean currents. *Geophysical Research Letters*, **33** (24),
917 1–5, doi:10.1029/2006GL027801.

918 Jouanno, J., X. Capet, G. Madec, G. Roullet, and P. Klein, 2016: Dissipation of the energy im-
919 parted by mid-latitude storms in the Southern Ocean. *Ocean Science*, **12** (3), 743–769, doi:
920 10.5194/os-12-743-2016.

921 Joyce, T. M., J. M. Toole, P. Klein, and L. N. Thomas, 2013: A near-inertial mode observed within
922 a Gulf Stream warm-core ring. *Journal of Geophysical Research: Oceans*, **118** (4), 1797–1806,
923 doi:10.1002/jgrc.20141.

924 Kelly, S. M., 2016: The Vertical Mode Decomposition of Surface and Internal Tides in the Pres-
925 ence of a Free Surface and Arbitrary Topography. *Journal of Physical Oceanography*, **46** (12),
926 3777–3788, doi:10.1175/jpo-d-16-0131.1.

927 Klein, P., B. L. Hua, G. Lapeyre, X. Capet, S. Le Gentil, and H. Sasaki, 2008: Upper Ocean
928 Turbulence from High-Resolution 3D Simulations. *Journal of Physical Oceanography*, **38** (8),
929 1748–1763, doi:10.1175/2007jpo3773.1.

930 Klein, P., J. Isern-Fontanet, G. Lapeyre, G. Roullet, E. Danioux, B. Chapron, S. Le Gentil, and
931 H. Sasaki, 2009: Diagnosis of vertical velocities in the upper ocean from high resolution sea
932 surface height. *Geophysical Research Letters*, **36** (12), 1–5, doi:10.1029/2009gl038359.

933 LaCasce, J. H., and A. Mahadevan, 2006: Estimating subsurface horizontal and vertical veloc-
934 ities from sea-surface temperature. *Journal of Marine Research*, **64**, 695–721, doi:10.1357/
935 002224006779367267.

936 Lapeyre, G., 2009: What Vertical Mode Does the Altimeter Reflect? On the Decomposition in
937 Baroclinic Modes and on a Surface-Trapped Mode. *Journal of Physical Oceanography*, **39** (11),
938 2857–2874, doi:10.1175/2009jpo3968.1.

939 Lapeyre, G., and P. Klein, 2006a: Dynamics of the Upper Oceanic Layers in Terms of Surface
940 Quasigeostrophy Theory. *Journal of Physical Oceanography*, **36** (2), 165–176, doi:10.1175/
941 jpo2840.1.

942 Lapeyre, G., and P. Klein, 2006b: Impact of the small-scale elongated filaments on the oceanic ver-
943 tical pump. *Journal of Marine Research*, **64** (6), 835–851, doi:10.1357/002224006779698369.

944 Lapeyre, G., P. Klein, and B. L. Hua, 2006: Oceanic Restratification Forced by Surface Frontoge-
945 nesis. *Journal of Physical Oceanography*, **36** (8), 1577–1590, doi:10.1175/jpo2923.1.

946 Le Sommer, J., E. P. Chassignet, and A. J. Wallcraft, 2018: Ocean Circulation Modeling for Op-
947 erational Oceanography: Current Status and Future Challenges. *New Frontiers in Operational*
948 *Oceanography*, E. Chassignet, A. Pascual, J. Tintoré, and J. Verron, Eds., GODAE OceanView,
949 289–306, doi:10.17125/gov2018.ch12.

950 Leach, H., 1987: The diagnosis of synoptic-scale vertical motion in the seasonal thermocline.
951 *Deep Sea Research Part A, Oceanographic Research Papers*, **34 (12)**, 2005–2017, doi:10.1016/
952 0198-0149(87)90095-1.

953 Ledwell, J. R., D. J. McGillicuddy, and L. A. Anderson, 2008: Nutrient flux into an intense
954 deep chlorophyll layer in a mode-water eddy. *Deep-Sea Research Part II: Topical Studies in*
955 *Oceanography*, **55 (10-13)**, 1139–1160, doi:10.1016/j.dsr2.2008.02.005.

956 Lévy, M., R. Ferrari, P. J. Franks, A. P. Martin, and P. Rivière, 2012a: Bringing physics to life at
957 the submesoscale. *Geophysical Research Letters*, **39 (14)**, 1–14, doi:10.1029/2012GL052756.

958 Lévy, M., P. J. Franks, and K. S. Smith, 2018: The role of submesoscale currents in structuring
959 marine ecosystems. *Nature communications*, **9 (1)**, 4758, doi:10.1038/s41467-018-07059-3.

960 Lévy, M., O. Jahn, S. Dutkiewicz, and M. J. Follows, 2014: Phytoplankton diversity and commu-
961 nity structure affected by oceanic dispersal and mesoscale turbulence. *Limnology and Oceanog-*
962 *raphy: Fluids and Environments*, **4 (1)**, 67–84, doi:10.1215/21573689-2768549.

963 Lévy, M., P. Klein, A. Tréguier, D. Iovino, G. Madec, S. Masson, and K. Takahashi, 2010: Mod-
964 ifications of gyre circulation by sub-mesoscale physics. *Ocean Modelling*, **34 (1-2)**, 1–15, doi:
965 10.1016/j.ocemod.2010.04.001.

966 Lévy, M., L. Resplandy, P. Klein, G. Madec, A.-M. Tréguier, S. Masson, and K. Takahashi, 2012b:
967 Large-scale impacts of submesoscale dynamics on phytoplankton: Local and remote effects.
968 *Ocean Modelling*. *Ocean Modelling*, **43-44**, 77–93, doi:10.1016/j.ocemod.2011.12.003.

969 Lien, R.-C., and Coauthors, 2014: The LatMix Summer Campaign: Submesoscale Stirring in
970 the Upper Ocean. *Bulletin of the American Meteorological Society*, **96 (8)**, 1257–1279, doi:
971 10.1175/bams-d-14-00015.1.

972 Lindstrom, S. S., X. Qian, and D. R. Watts, 1997: Vertical motion in the gulf stream and its relation
973 to meanders. *Journal of Geophysical Research: Oceans*, **102**, 8485–8503.

974 Lindstrom, S. S., and R. D. Watts, 1994: Vertical motion in the gulf stream near 68 w. *Journal of*
975 *Physical Oceanography*, **24**, 2321–2333.

976 Martin, A. P., and K. J. Richards, 2001: Mechanisms for vertical nutrient transport within a North
977 Atlantic mesoscale eddy. *Deep-Sea Research Part II: Topical Studies in Oceanography*, **48 (4-**
978 **5)**, 757–773, doi:10.1016/S0967-0645(00)00096-5.

979 Mcwilliams, J. C., L. P. Graves, and M. T. Montgomery, 2003: A formal theory for vortex rossby-
980 waves and vortex evolution. *Geophysical & Astrophysical Fluid Dynamics*, **97**, 275–309, doi:
981 10.1080/0309192031000108698.

982 Nagai, T., A. Tandon, and D. L. Rudnick, 2006: Two-dimensional ageostrophic secondary circula-
983 tion at ocean fronts due to vertical mixing and large-scale deformation. *Journal of Geophysical*
984 *Research: Oceans*, **111 (9)**, 1–18, doi:10.1029/2005JC002964.

985 Nicholson, S. A., M. Lévy, J. Jouanno, X. Capet, S. Swart, and P. M. Monteiro, 2019: Iron Supply
986 Pathways Between the Surface and Subsurface Waters of the Southern Ocean: From Winter
987 Entrainment to Summer Storms. *Geophysical Research Letters*, **46 (24)**, 14 567–14 575.

988 Pallàs-Sanz, E., T. M. Johnston, and D. L. Rudnick, 2010: Frontal dynamics in a California Cur-
989 rent System shallow front: 2. Mesoscale vertical velocity. *Journal of Geophysical Research:*
990 *Oceans*, **115 (12)**, C12 068, doi:10.1029/2010JC006474.

991 Pascual, A., D. Gomis, R. L. Haney, and S. Ruiz, 2004: A Quasigeostrophic Analysis of a Mean-
992 der in the Palamós Canyon: Vertical Velocity, Geopotential Tendency, and a Relocation Tech-

993 nique. *Journal of Physical Oceanography*, **34** (10), 2274–2287, doi:10.1175/1520-0485(2004)
994 034⟨2274:aqaoam⟩2.0.co;2.

995 Pascual, A., S. Ruiz, B. Buongiorno Nardelli, S. Guinehut, D. Iudicone, and J. Tintoré, 2015:
996 Net primary production in the Gulf Stream sustained by quasi-geostrophic vertical exchanges.
997 *Geophysical Research Letters*, **42** (2), 441–449, doi:10.1002/2014GL062569.

998 Pascual, A., and Coauthors, 2017: A multiplatform experiment to unravel meso- and submesoscale
999 processes in an intense front (alborex). *Frontiers in Marine Science*, **4**, doi:10.3389/fmars.2017.
1000 00039.

1001 Pauley, P. M., and S. J. Nieman, 1992: A comparison of quasigeostrophic and nonquasi-
1002 geostrophic vertical motions for a model-simulated rapidly intensifying marine extratropical cy-
1003 clone. *Monthly Weather Review*, **120** (7), 1108–1134, doi:10.1175/1520-0493(1992)120⟨1108:
1004 ACOQAN⟩2.0.CO;2.

1005 Pidcock, R., A. Martin, J. Allen, S. C. Painter, and D. Smeed, 2012: The spatial variability of
1006 vertical velocity in an Iceland basin eddy dipole. *Deep Sea Research Part I: Oceanographic
1007 Research Papers*, **72**, 121–140, doi:10.1016/j.dsr.2012.10.008.

1008 Pinot, J.-M., J. Tintoré, and D.-P. Wang, 1996: A study of the omega equation for diagnosing
1009 vertical motions at ocean fronts. *Journal of Marine Research*, **54** (2), 239–259, doi:10.1357/
1010 0022240963213358.

1011 Pollard, R. T., and L. A. Regier, 1992: Vorticity and Vertical Circulation at an Ocean Front.
1012 *Journal of Physical Oceanography*, **22** (6), 609–625, doi:10.1175/1520-0485(1992)022⟨0609:
1013 vavcaa⟩2.0.co;2.

1014 Polzin, K. L., J. M. Toole, and R. W. Schmitt, 1995: Finescale parameterizations of turbulent
1015 dissipation. *Journal of Physical Oceanography*, **25** (3), 306–328, doi:10.1175/1520-0485(1995)
1016 025⟨0306:FPOTD⟩2.0.CO;2.

1017 Ponte, A. L., and P. Klein, 2013: Reconstruction of the upper ocean 3D dynamics
1018 from high-resolution sea surface height. *Ocean Dynamics*, **63** (7), 777–791, doi:10.1007/
1019 s10236-013-0611-7.

1020 Qiu, B., S. Chen, P. Klein, H. Torres, J. Wang, L. L. Fu, and D. Menemenlis, 2020: Reconstructing
1021 upper ocean vertical velocity field from sea surface height in the presence of unbalanced motion.
1022 *Journal of Physical Oceanography*, **49** (10), 55–79, doi:10.1175/JPO-D-19-0172.1.

1023 Qiu, B., S. Chen, P. Klein, J. Wang, H. Torres, L.-L. Fu, and D. Menemenlis, 2018: Seasonality in
1024 transition scale from balanced to unbalanced motions in the world ocean. *Journal of Physical
1025 Oceanography*, **48**, 591–605, doi:10.1175/JPO-D-17-0169.1.

1026 Rixen, M., J. T. Allen, R. T. Pollard, and J.-M. Beckers, 2003: Along or across front ocean sur-
1027 vey strategy? The estimation of quasi-geostrophic vertical velocities and temperature fluxes.
1028 *Geophysical Research Letters*, **30** (5), n/a–n/a, doi:10.1029/2002gl015810.

1029 Rixen, M., J. Beckers, and J. T. Allen, 2001: Diagnosis of vertical velocities with the QG Omega
1030 equation : a relocation method to obtain pseudo-synoptic data sets. *Deep Sea Research Part I:*
1031 *Oceanographic Research Papers*, **48**, 1347–1373.

1032 Rocha, C. B., A. Tandon, I. C. Da Silveira, and J. A. M. Lima, 2013: Traditional quasi-geostrophic
1033 modes and surface quasi-geostrophic solutions in the Southwestern Atlantic. *Journal of Geo-
1034 physical Research: Oceans*, **118** (5), 2734–2745, doi:10.1002/jgrc.20214.

1035 Rousselet, L., and Coauthors, 2019: Vertical Motions and Their Effects on a Biogeochemical
1036 Tracer in a Cyclonic Structure Finely Observed in the Ligurian Sea. *Journal of Geophysical*
1037 *Research: Oceans*, 1–14, doi:10.1029/2018JC014392.

1038 Rudnick, D. L., 1996: Inferring the geostrophic and vertical velocity fields. *J. of Geophys. Res.*,
1039 **101 (C7)**, 16,216–291,303.

1040 Ruiz, S., A. Pascual, B. Garau, I. Pujol, and J. Tintoré, 2009: Vertical motion in the up-
1041 per ocean from glider and altimetry data. *Geophysical Research Letters*, **36 (14)**, 1–6, doi:
1042 10.1029/2009GL038569.

1043 Shcherbina, A. Y., E. A. D'Asaro, C. M. Lee, J. M. Klymak, M. J. Molemaker, and J. C.
1044 McWilliams, 2013: Statistics of vertical vorticity, divergence, and strain in a developed sub-
1045 mesoscale turbulence field. *Geophysical Research Letters*, **40**, 4706–4711.

1046 Shearman, R. K., J. A. Barth, J. S. Allen, and R. L. Haney, 2000: Diagnosis of the three-
1047 dimensional circulation in mesoscale features with large rossby number. *Journal of Physi-
1048 cal Oceanography*, **30 (11)**, 2687–2709, doi:10.1175/1520-0485(2001)031<2687:DOTTDC>2.
1049 0.CO;2.

1050 Siegelman, L., P. Klein, P. Rivire, A. F. Thompson, H. S. Torres, M. Flexas, and D. Menemenlis
1051 2020: Enhanced upward heat transport at deep submesoscale ocean fronts. *Nature Geoscience*,
1052 **13**, 50–55, doi:10.1038/s41561-019-0489-1.

1053 Smith, K. M., P. E. Hamlington, and B. Fox-Kemper, 2016: Effects of submesoscale turbulence
1054 on ocean tracers. *Journal of Geophysical Research: Oceans*, **121**, 908–933.

1055 Soufflet, Y., P. Marchesiello, F. Lemarié, J. Jouanno, X. Capet, L. Debreu, and R. Benshila, 2016:
1056 On effective resolution in ocean models. *Ocean Modelling*, **98**, 36–50, doi:10.1016/j.ocemod.
1057 2015.12.004.

1058 Steffen, E. L., and E. A. D'Asaro, 2002: Deep Convection in the Labrador Sea as Observed
1059 by Lagrangian Floats. *Journal of Physical Oceanography*, **32** (2), 475–492, doi:10.1175/
1060 1520-0485(2002)032<0475:dcitls>2.0.co;2.

1061 Strass, V. H., 1994: Mesoscale Instability and Upwelling. Part 2: Testing the Diagnostics of Verti-
1062 cal Motion with a Three-Dimensional Ocean Front Model. *Journal of Physical Oceanography*,
1063 **24** (8), 1759–1767, doi:10.1175/1520-0485(1994)024<1759:miaupt>2.0.co;2.

1064 Su, Z., H. S. Torres, P. Klein, A. F. Thompson, L. Siegelman, J. Wang, D. Menemenlis, and
1065 C. Hill, 2020: High-Frequency Submesoscale Motions Enhance the Upward Vertical Heat
1066 Transport in the Global Ocean. *Journal of Geophysical Research: Oceans*, **9**, 1–13, doi:
1067 10.1029/2020JC016544.

1068 Sullivan, P. P., and J. C. McWilliams, 2018: Frontogenesis and frontal arrest of a dense filament in
1069 the oceanic surface boundary layer. *Journal of Fluid Mechanics*, **837**, 341–380.

1070 Suzuki, N., B. Fox-Kemper, P. E. Hamlington, and L. P. Van Roekel, 2016: Surface waves affect
1071 frontogenesis. *Journal of Geophysical Research: Oceans*, **121**, 3597–3624.

1072 Thomas, L., and R. Ferrari, 2008: Friction, Frontogenesis, and the Stratification of the Sur-
1073 face Mixed Layer. *Journal of Physical Oceanography*, **38** (11), 2501–2518, doi:10.1175/
1074 2008jpo3797.1.

1075 Thomas, L. N., and C. M. Lee, 2005: Intensification of Ocean Fronts by Down-Front Winds.
1076 *Journal of Physical Oceanography*, **35** (6), 1086–1102, doi:10.1175/jpo2737.1.

1077 Thomas, L. N., C. M. Lee, and Y. Yoshikawa, 2010: The Subpolar Front of the Japan/East Sea.

1078 Part II: Inverse Method for Determining the Frontal Vertical Circulation. *Journal of Physical*
1079 *Oceanography*, **40** (1), 3–25, doi:10.1175/2009jpo4018.1.

1080 Thompson, A. F., A. Lazar, C. Buckingham, A. C. Naveira Garabato, G. M. Damerell, and K. J.
1081 Heywood, 2016: Open-Ocean Submesoscale Motions: A Full Seasonal Cycle of Mixed Layer
1082 Instabilities from Gliders. *Journal of Physical Oceanography*, **46** (4), 1285–1307, doi:10.1175/
1083 JPO-D-15-0170.1.

1084 Thomsen, S., T. Kanzow, F. Colas, V. Echevin, G. Krahmann, and A. Engel, 2016: Do subme-
1085 soscale frontal processes ventilate the oxygen minimum zone off Peru? *Geophysical Research*
1086 *Letters*, **43** (15), 8133–8142, doi:10.1002/2016gl070548.

1087 Uchida, T., D. Balwada, R. Abernathey, G. McKinley, S. Smith, and M. Lévy, 2019: The Contribu-
1088 tion of Submesoscale over Mesoscale Eddy Iron Transport in the Open Southern Ocean *Journal*
1089 *of Advances in Modeling Earth Systems*, **11** (12), 3934–3958, doi:10.1029/2019MS001805.

1090 Viúdez, A., 2018: Two modes of vertical velocity in subsurface mesoscale eddies. *Journal of*
1091 *Geophysical Research: Oceans*, **123** (5), 3705–3722, doi:10.1029/2017JC013735.

1092 Viúdez, Á., and D. G. Dritschel, 2004: Potential Vorticity and the Quasigeostrophic and Semi-
1093 geostrophic Mesoscale Vertical Velocity. *Journal of Physical Oceanography*, **34** (4), 865–887,
1094 doi:10.1175/1520-0485(2004)034<0865:pvatqa>2.0.co;2.

1095 Viúdez, Á., J. Tintoré, and R. L. Haney, 2002: About the Nature of the Generalized Omega
1096 Equation. *Journal of the Atmospheric Sciences*, **59** (5), 787–795, doi:10.1175/1520-0469(1996)
1097 053<0787:atnotg>2.0.co;2.

1098 Volkov, D. L., and L.-L. Fu, 2010: On the Reasons for the Formation and Variability of the Azores
1099 Current. *Journal of Physical Oceanography*, **40** (10), 2197–2220, doi:10.1175/2010jpo4326.1.

1100 Volkov, D. L., and L. L. Fu, 2011: Interannual variability of the Azores Current strength and eddy
1101 energy in relation to atmospheric forcing. *Journal of Geophysical Research: Oceans*, **116** (11),
1102 doi:10.1029/2011JC007271.

1103 Whitt, D. B., M. Lévy, and J. R. Taylor, 2019: Submesoscales enhance storm-driven vertical mix-
1104 ing of nutrients : insights from a biogeochemical large eddy simulation. *Journal of Geophysical*
1105 *Research*, doi:10.1029/.

1106 Whitt, D. B., and L. N. Thomas, 2013: Near-Inertial Waves in Strongly Baroclinic Currents.
1107 *Journal of Physical Oceanography*, **43** (4), 706–725, doi:10.1175/jpo-d-12-0132.1.

1108 Xie, L., E. Pallàs-Sanz, Q. Zheng, S. Zhang, X. Zong, X. Yi, and M. Li, 2017: Diagnosis of 3D
1109 vertical circulation in the upwelling and frontal zones east of Hainan Island, China. *Journal of*
1110 *Physical Oceanography*, **47** (4), 755–774, doi:10.1175/JPO-D-16-0192.1.

1111 Yoshikawa, Y., C. M. Lee, and L. N. Thomas, 2012: The Subpolar Front of the Japan/East Sea. Part
1112 III: Competing Roles of Frontal Dynamics and Atmospheric Forcing in Driving Ageostrophic
1113 Vertical Circulation and Subduction. *Journal of Physical Oceanography*, **42** (6), 991–1011, doi:
1114 10.1175/jpo-d-11-0154.1.

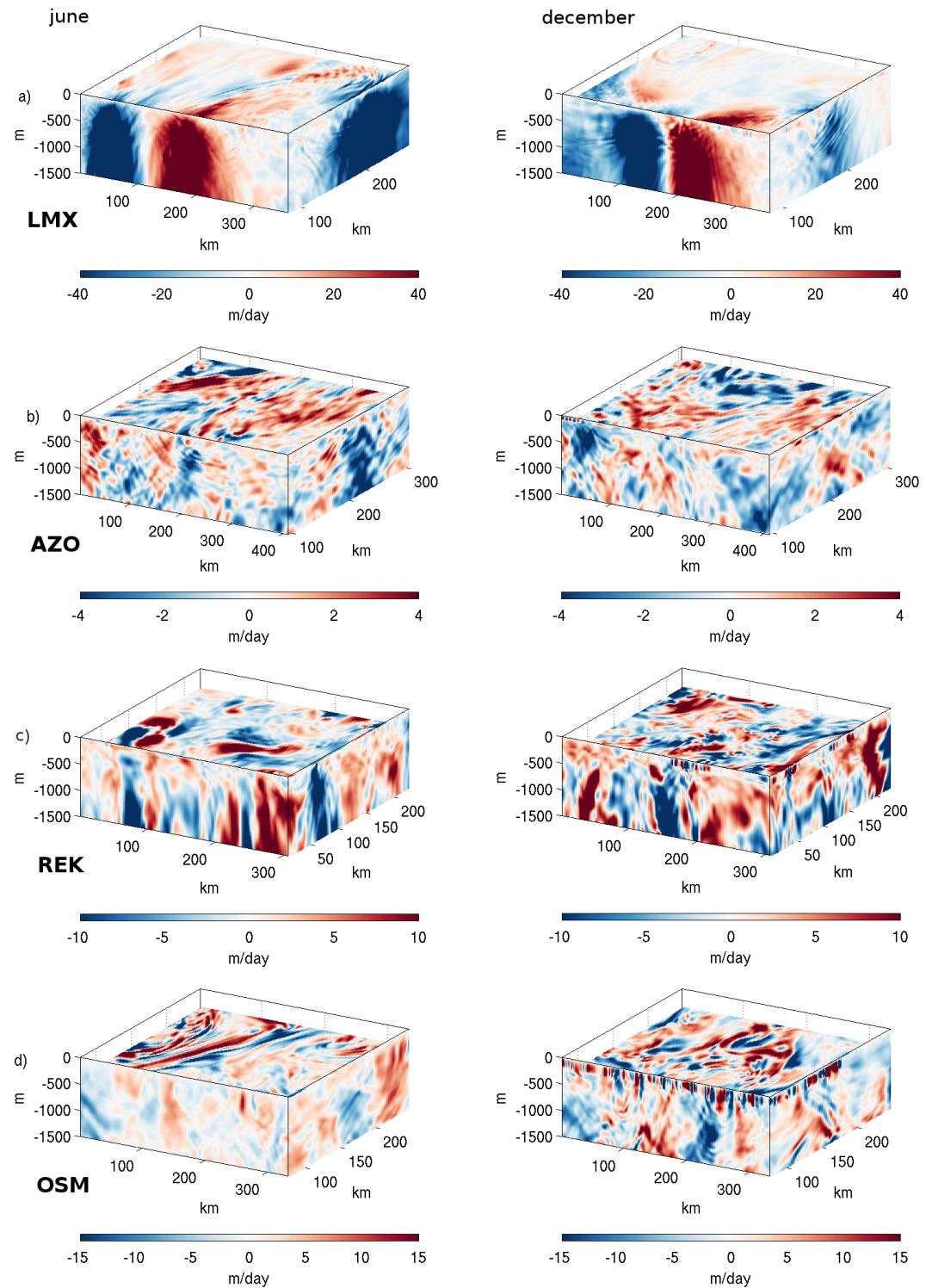
1115 Yu, X., A. C. Naveira Garabato, A. P. Martin, C. E. Buckingham, L. Brannigan, and Z. Su, 2019:
1116 An annual cycle of submesoscale vertical flow and restratification in the upper ocean. *Journal*
1117 *of Physical Oceanography*, **49**, 1439–1461, doi:10.1175/JPO-D-18-0253.1.

1118 LIST OF TABLES

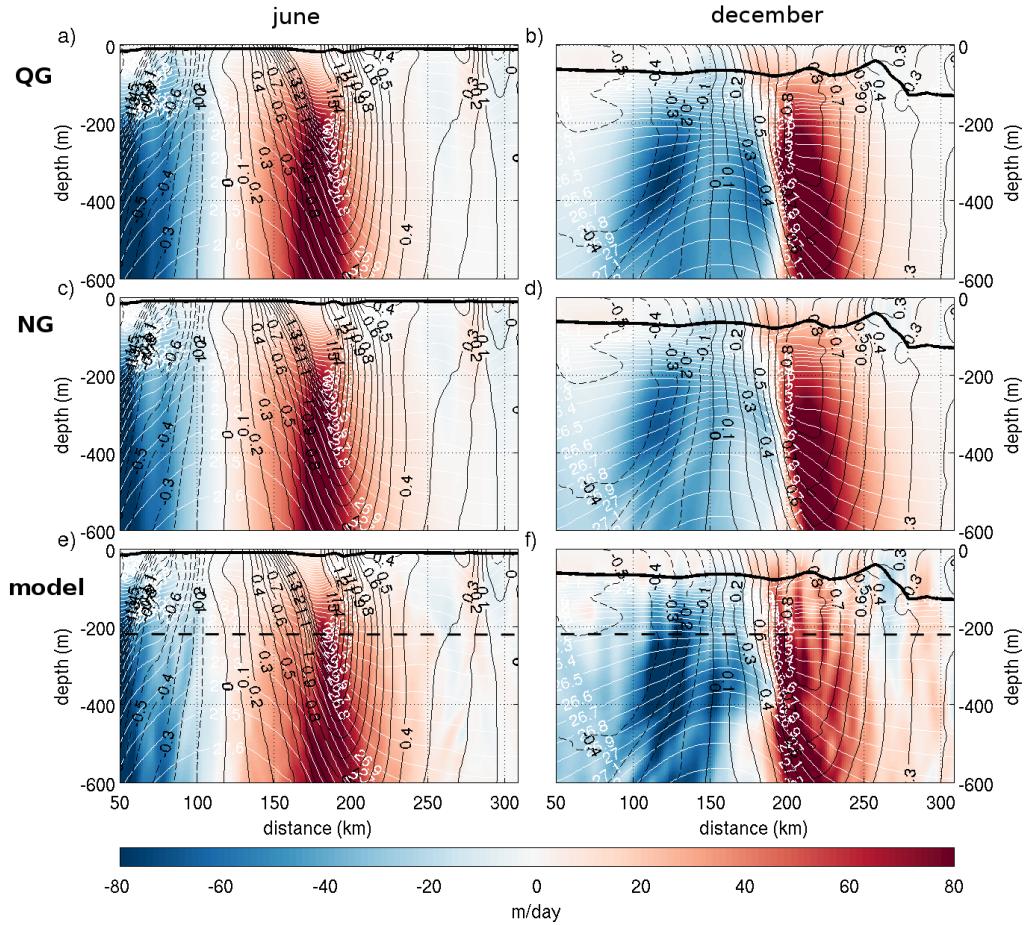
1119	Table 1. Statistics derived from the spectral coherence field (fig.8). Note that relating	
1120	the horizontal scale $L_{0.6}$ to the deformation radius, R_d , which is ~ 15 km in the	
1121	OSM and REK regions and ~ 30 km in the LMX and AZO regions, yields a	
1122	performance threshold of $0.3R_d$ on average, with a minimum $0.17R_d$ in winter	
1123	OSM and a maximum $0.49R_d$ in winter REK. In the AZO region in December	
1124	the squared coherence never exceeds 0.6 thus leading to a fraction of variance	
1125	null.	55
1126	Table 2. Averaged errors (in m day^{-1} and percentage of w_{model}), at depths z_a , for ω	
1127	with perfect right hand side (ω_{\dagger}), perfect boundaries (ω_{NG}^*) and both (ω_{\dagger}^*). See	
1128	section 2b for the detail on the computation of ω	56

1129 TABLE 1. Statistics derived from the spectral coherence field (fig.8). Note that relating the horizontal scale
 1130 $L_{0.6}$ to the deformation radius, R_d , which is ~ 15 km in the OSM and REK regions and ~ 30 km in the LMX
 1131 and AZO regions, yields a performance threshold of $0.3R_d$ on average, with a minimum $0.17R_d$ in winter OSM
 1132 and a maximum $0.49R_d$ in winter REK. In the AZO region in December the squared coherence never exceeds
 1133 0.6 thus leading to a fraction of variance null.

	Horizontal scale $L_{0.6}$ [km] (and wavelength [km]) below which the squared coherence between true and reconstructed vertical velocities is below 0.6. Values are provided for QG and NG reconstructions				fraction of vertical velocity variance retained by the reconstructed vertical velocity over the scale range $L > L_{0.6}$. Values are only provided for the NG reconstruction	
	Jun		Dec		Jun	Dec
	QG	NG	QG	NG		
LMX	9.2 (58)	6.7 (42)	9.5 (60)	7.8 (49)	0.90	0.84
AZO	6.4 (40)	6.3 (40)	-	-	0.74	0
REK	4.7 (30)	4.6 (29)	7.3 (46)	6.5 (41)	0.87	0.61
OSM	3.9 (25)	3.9 (25)	3.0 (19)	2.6 (16)	0.72	0.88


1134 TABLE 2. Averaged errors (in m day^{-1} and percentage of w_{model}), at depths z_a , for ω with perfect right hand
 1135 side (ω_\dagger), perfect boundaries (ω_{NG}^*) and both (ω_\dagger^*). See section 2b for the detail on the computation of ω .

	ω_\dagger^*		ω_\dagger		ω_{NG}^*	
LMX	Jun	Dec	Jun	Dec	Jun	Dec
	0.41 (3%)	0.54 (5%)	4.08 (28%)	2.85 (24%)	4.87 (34%)	5.21 (44%)
AZO	Jun	Dec	Jun	Dec	Jun	Dec
	0.04 (3%)	0.04 (3%)	0.25 (20%)	0.27 (23%)	0.80 (65%)	0.95 (79%)
REK	Jun	Dec	Jun	Dec	Jun	Dec
	0.13 (4%)	0.11 (3%)	0.96 (29%)	1.19 (29%)	1.47 (45%)	2.85 (69%)
OSM	Jun	Dec	Jun	Dec	Jun	Dec
	0.06 (2%)	0.20 (4%)	0.66 (19%)	0.90 (16 %)	2.06 (58%)	2.96 (52 %)


1136 LIST OF FIGURES

1137	Fig. 1. Model vertical velocity on 10 june 2008 (left) and 10 december 2008 (right) in the a) LMX	59
1138	region, b) AZO region, c) REK region and d) OSM region. The upper horizontal plan	
1139	corresponds to the depth of analysis ($z_a = 220$ m in LMX, 250 m in AZO, and 380 m in	
1140	REK and OSM)	
1141	Fig. 2. Vertical velocity in the LMX region on 10 June 2008 (left, a, c, e) and 10 December 2008	60
1142	(right, b, d, f) for the QG inversion (a, b), NG inversion (c, d) and model data (e, f). The thin	
1143	white (resp. black) lines represent the isopycns (resp. horizontal velocity, $m s^{-1}$). The bold	
1144	solid (resp. dashed) black line indicates mixed layer base (resp. the analysis depth z_a).	
1145	Fig. 3. As in Fig. 2 but for the AZO region.	61
1146	Fig. 4. As in Fig. 2 but for the REK region.	62
1147	Fig. 5. As in Fig. 2 but for the OSM region.	63
1148	Fig. 6. a,b) Vertical velocity variance power spectra for w_{model} (solid) and ω_{NG} (dashed) at depths	64
1149	z_a in the LMX (black, $z_a = 220$ m), AZO (green, $z_a = 250$ m), REK (red, $z_a = 380$ m), and	
1150	OSM (blue, $z_a = 380$ m) regions in a) June and b) December. c,d) Same as (a,b) but for	
1151	w_{model} (solid) and ω_{NG}^* (dashed, the reconstructed ω_{NG}^* is computed using perfect boundary	
1152	conditions). Straight (resp. dashed and dot-dashed) lines indicate -2 (resp. $-5/3$ and -3)	
1153	roll-offs. The bottom (resp. top) horizontal axis displays the length scale (resp. wavelength).	
1154	Fig. 7. Averaged vertical profiles of (a,b) buoyancy frequency, (c,d) eddy kinetic energy and (e,f)	65
1155	vertical velocity root mean square for the LMX (black), AZO (green), REK (red) and OSM	
1156	(blue) regions in June (upper panel) and December (lower panel). Note the subpanels with	
1157	a change of scale to accommodate the large differences in EKE between LMX and the other	
1158	regions.	
1159	Fig. 8. a,b) Spectral coherence as a function of scale between w_{model} and ω_{NG} (resp. ω_{QG}) at depths	66
1160	z_a is represented by a solid (resp. dashed) line in the LMX (black), AZO (green), REK (red),	
1161	and OSM (blue) regions in a) June and b) December. c,d) Same as (a,b) but the dashed line	
1162	represent the coherence between w_{model} and ω_{NG}^* (the reconstructed ω_{NG}^* is computed using	
1163	perfect boundary conditions). The bottom (resp. top) horizontal axis displays the length	
1164	scale (resp. wavelength).	
1165	Fig. 9. Spectral coherence between w_{model} and ω_{NG} at depths z_a averaged over the scale ranges (a,	67
1166	b) $10 - 25$ km and (c, d) $3 - 10$ km as a function of the fraction of variance retained by each	
1167	averaging intervals. Results are shown for the LMX (black), AZO (green), REK (red), and	
1168	OSM (blue) regions in June (left, a, c) and December (right, b, d). The markers represent	
1169	the timespan of the averages: the star is 1 day, square 2 days, diamond 5 days and triangle	
1170	10 days. The highest coherence is indicated by a larger marker with a black contour. The	
1171	black dashed lines mark a fraction of variance of 75% and a coherence of 0.6.	
1172	Fig. 10. Relative error, at depths z_a , between w_{model} and ω_{\dagger} in June (a-d) and December (e-h) in the	68
1173	LMX (a, e), AZO (b, f), REK (c, g) and OSM (d, h) regions as a function of the depth where	
1174	the bottom boundary condition (z_{bottom} in the text) is imposed. Errors for a Dirichlet (resp.	
1175	Neumann) BBC are represented with a black (resp. blue) line. Black diamonds indicate	
1176	error values for a Dirichlet boundary condition modified as in Rudnick (1996) (see section	
1177	4d for details). The vertical bars show the standard deviation over the 11 daily averages used	
1178	for our analysis.	

1202 FIG. 1. Model vertical velocity on 10 june 2008 (left) and 10 december 2008 (right) in the a) LMX region, b)
 1203 AZO region, c) REK region and d) OSM region. The upper horizontal plan corresponds to the depth of analysis
 1204 ($z_a = 220$ m in LMX, 250 m in AZO, and 380 m in REK and OSM)

1205 FIG. 2. Vertical velocity in the LMX region on 10 June 2008 (left, a, c, e) and 10 December 2008 (right, b,
 1206 d, f) for the QG inversion (a, b), NG inversion (c, d) and model data (e, f). The thin white (resp. black) lines
 1207 represent the isopycnus (resp. horizontal velocity, $m s^{-1}$). The bold solid (resp. dashed) black line indicates
 1208 mixed layer base (resp. the analysis depth z_a).

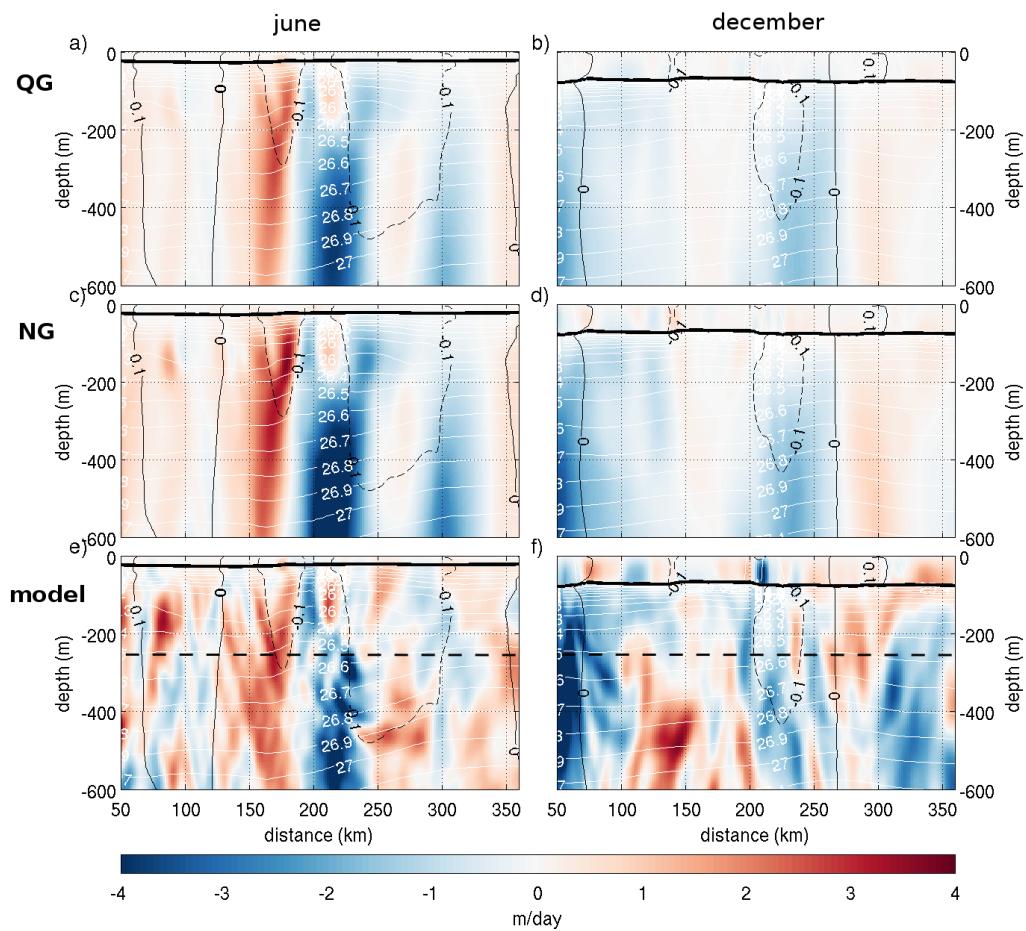


FIG. 3. As in Fig. 2 but for the AZO region.

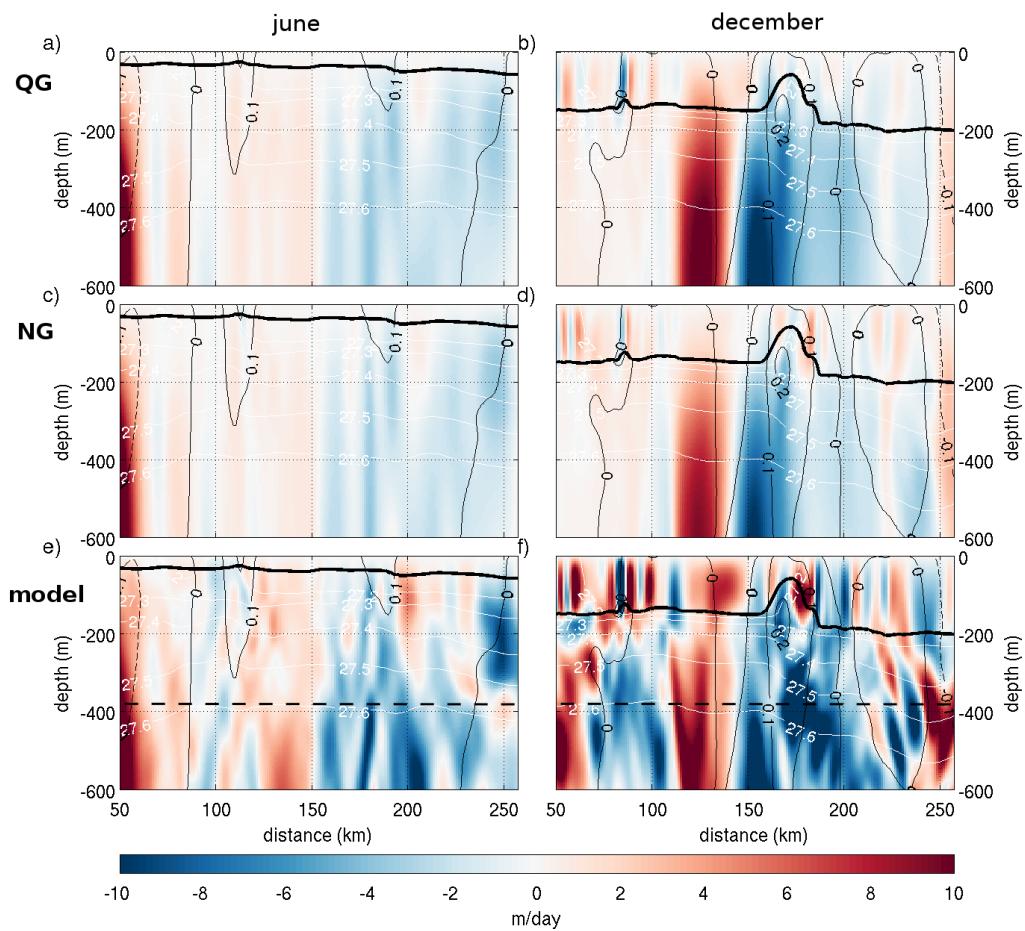
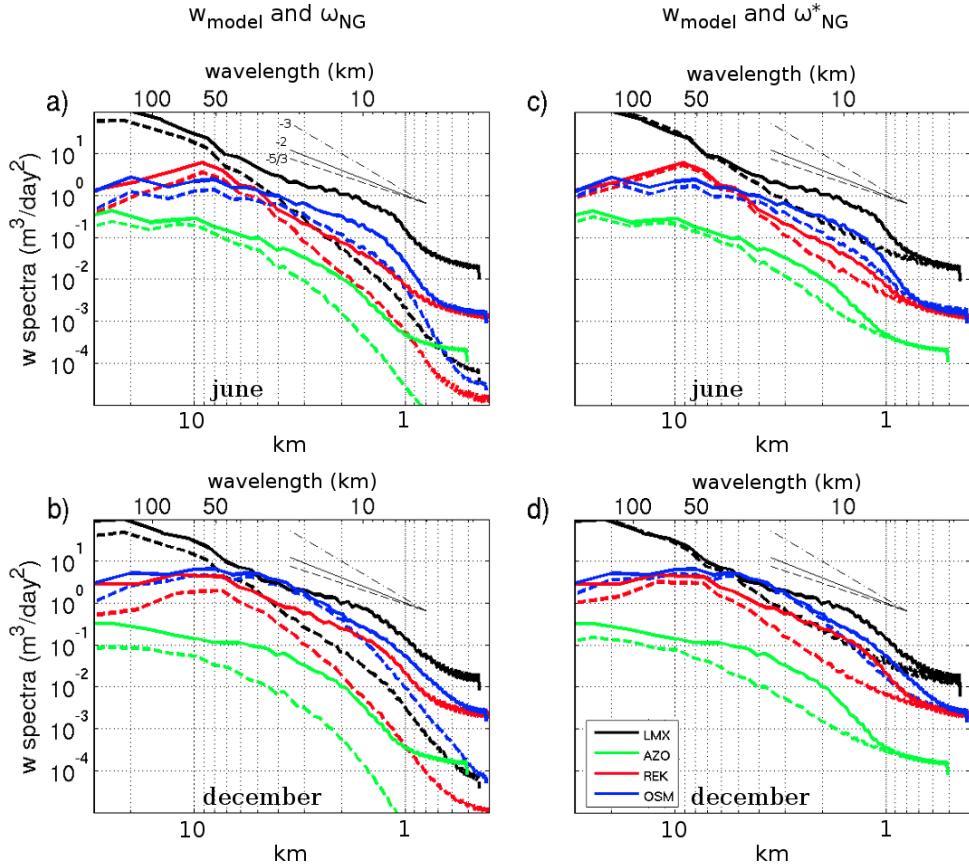
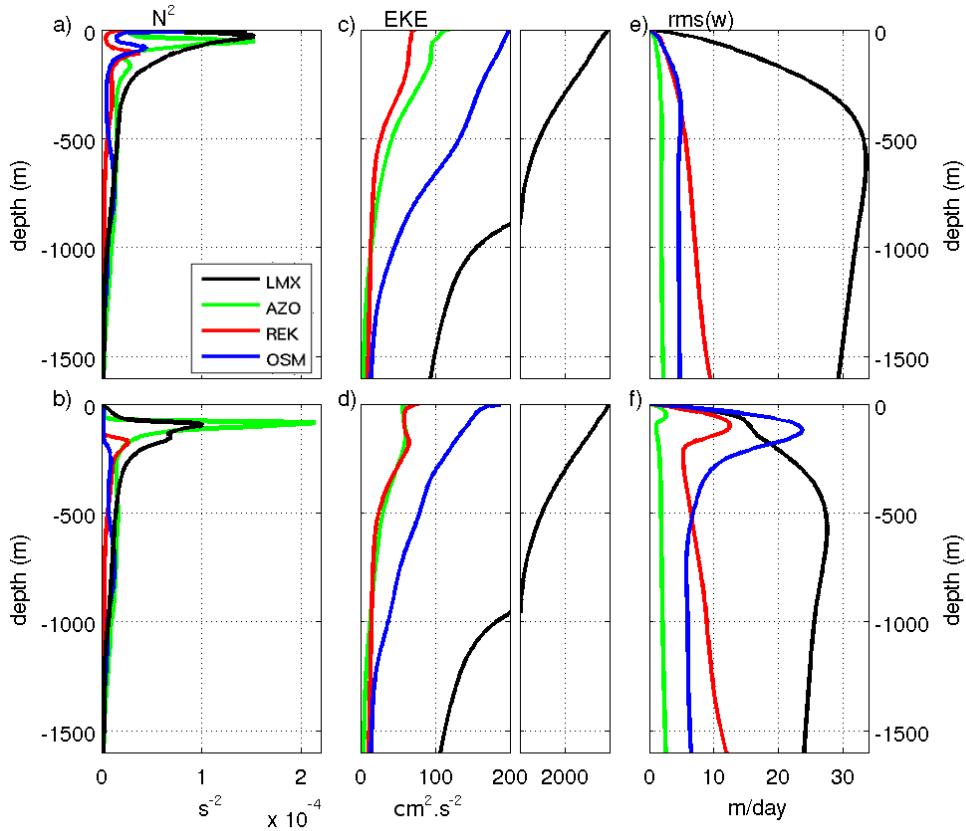
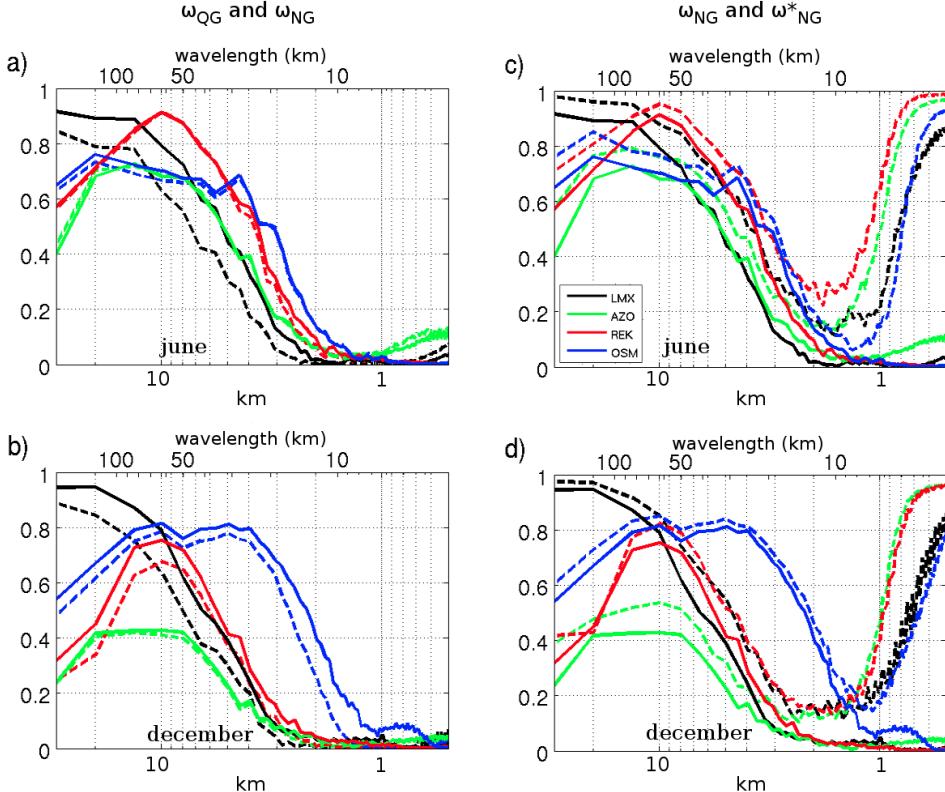
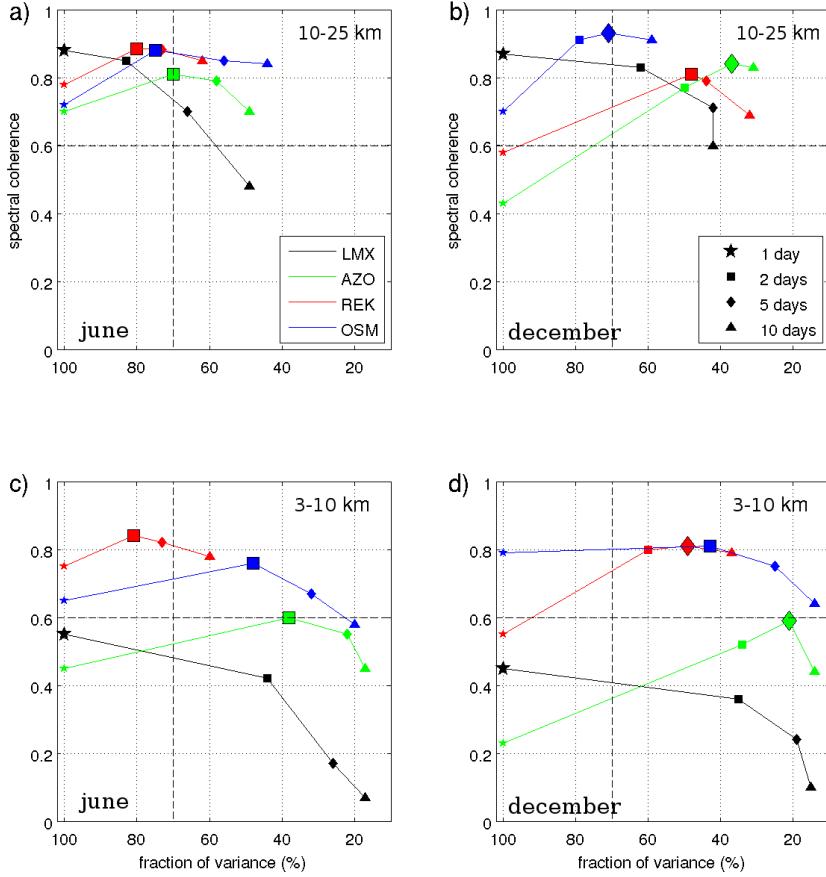
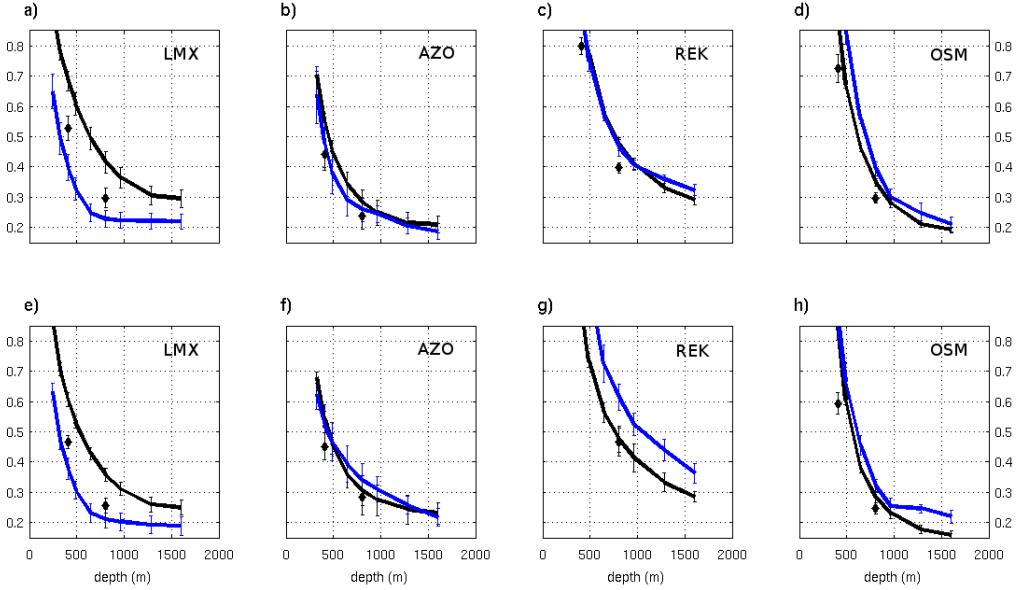


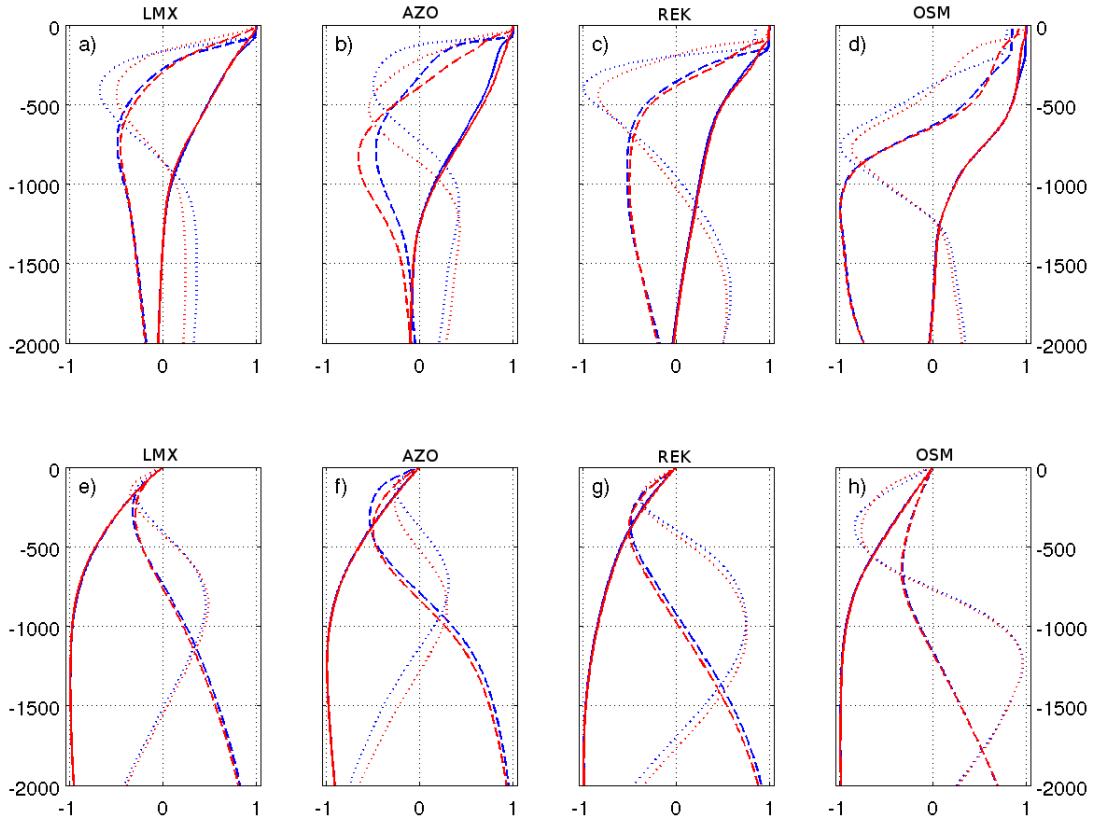
FIG. 4. As in Fig. 2 but for the REK region.

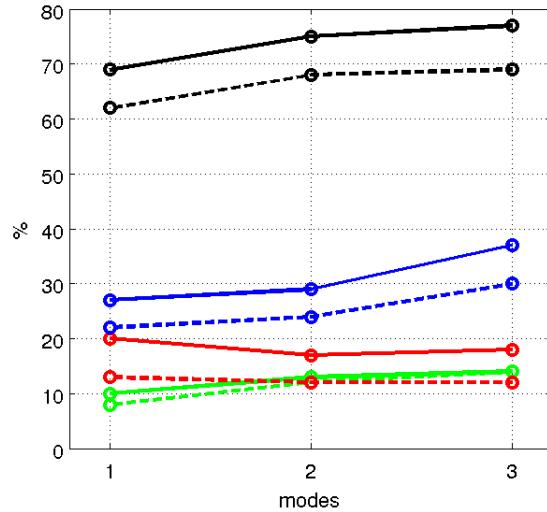




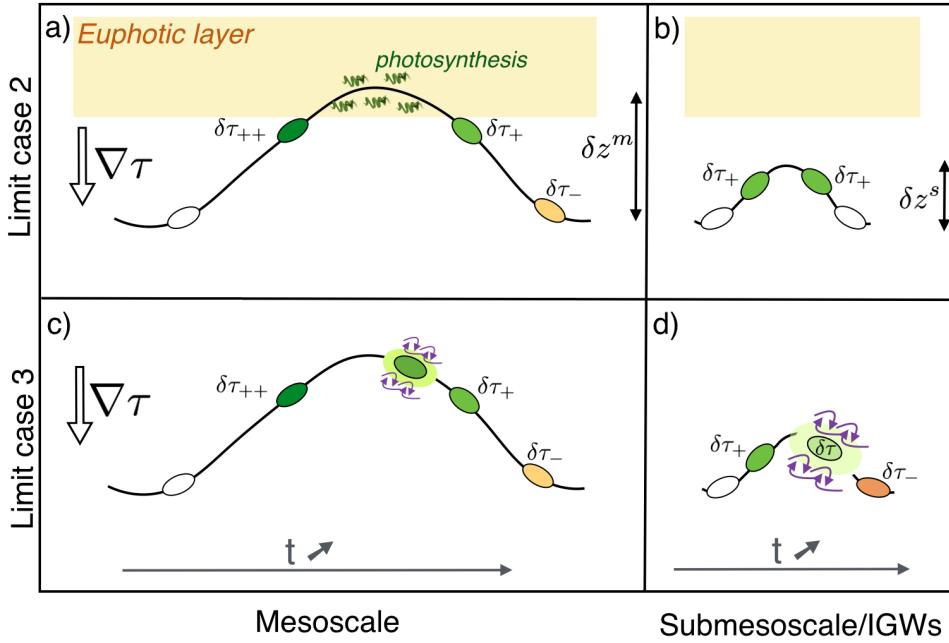

FIG. 5. As in Fig. 2 but for the OSM region.


1209 FIG. 6. a,b) Vertical velocity variance power spectra for w_{model} (solid) and ω_{NG} (dashed) at depths z_a in the
 1210 LMX (black, $z_a = 220$ m), AZO (green, $z_a = 250$ m), REK (red, $z_a = 380$ m), and OSM (blue, $z_a = 380$ m)
 1211 regions in a) June and b) December. c,d) Same as (a,b) but for w_{model} (solid) and ω_{NG}^* (dashed, the reconstructed
 1212 ω_{NG}^* is computed using perfect boundary conditions). Straight (resp. dashed and dot-dashed) lines indicate
 1213 -2 (resp. $-5/3$ and -3) roll-offs. The bottom (resp. top) horizontal axis displays the length scale (resp.
 1214 wavelength).


1215 FIG. 7. Averaged vertical profiles of (a,b) buoyancy frequency, (c,d) eddy kinetic energy and (e,f) vertical
 1216 velocity root mean square for the LMX (black), AZO (green), REK (red) and OSM (blue) regions in June
 1217 (upper panel) and December (lower panel). Note the subpanels with a change of scale to accommodate the large
 1218 differences in EKE between LMX and the other regions.


1219 FIG. 8. a,b) Spectral coherence as a function of scale between ω_{model} and ω_{NG} (resp. ω_{QG}) at depths z_a is
 1220 represented by a solid (resp. dashed) line in the LMX (black), AZO (green), REK (red), and OSM (blue) regions
 1221 in a) June and b) December. c,d) Same as (a,b) but the dashed line represent the coherence between ω_{model} and
 1222 ω_{NG}^* (the reconstructed ω_{NG}^* is computed using perfect boundary conditions). The bottom (resp. top) horizontal
 1223 axis displays the length scale (resp. wavelength).


1224 FIG. 9. Spectral coherence between w_{model} and ω_{NG} at depths z_a averaged over the scale ranges (a, b) $10 - 25$
 1225 km and (c, d) $3 - 10$ km as a function of the fraction of variance retained by each averaging intervals. Results are
 1226 shown for the LMX (black), AZO (green), REK (red), and OSM (blue) regions in June (left, a, c) and December
 1227 (right, b, d). The markers represent the timespan of the averages: the star is 1 day, square 2 days, diamond 5
 1228 days and triangle 10 days. The highest coherence is indicated by a larger marker with a black contour. The black
 1229 dashed lines mark a fraction of variance of 75% and a coherence of 0.6.


1230 FIG. 10. Relative error, at depths z_a , between w_{model} and $\omega_{\tilde{t}}$ in June (a-d) and December (e-h) in the LMX
 1231 (a, e), AZO (b, f), REK (c, g) and OSM (d, h) regions as a function of the depth where the bottom boundary
 1232 condition (z_{bottom} in the text) is imposed. Errors for a Dirichlet (resp. Neumann) BBC are represented with a
 1233 black (resp. blue) line. Black diamonds indicate error values for a Dirichlet boundary condition modified as
 1234 in Rudnick (1996) (see section 4d for details). The vertical bars show the standard deviation over the 11 daily
 1235 averages used for our analysis.

1236 FIG. 11. First three baroclinic pressure modes for the a) LMX, b) AZO, c) REK, and d) OSM region in June
 1237 (red) and December (blue). First three vertical velocity modes for the e) LMX, f) AZO, g) REK, and h) OSM
 1238 region in June (red) and December (blue). The first mode (resp. 2nd and 3rd modes) is represented with a solid
 1239 (resp. dashed and dotted) line. The amplitudes of the modes have been scaled so as to vary between -1 and 1 .

1240 FIG. 12. Percentage of vertical water profiles for which the projection of model w on the subset of the gravest
 1241 vertical modes (1, 2 or 3 gravest modes) leads to an approximation of w with a relative error that is less than 50
 1242 %, i.e., percentage of profiles where $\varepsilon/w < 0.5$ (ε being defined in equation A8). Percentages are represented
 1243 for LMX (black), AZO (green), REK (red) and OSM (blue) in summer (plain lines) and winter (dashed lines).

1244 FIG. 13. schematic representation of the vertical disturbance (y-direction) and associated tracer anomaly tem-
 1245 poral evolution undergone by a water parcel in 4 different situations. Upper panels: a nutrient-like tracer τ with
 1246 a photosynthesis-like sink term ($\nabla\tau$ is positive downward) in the upper ocean is subjected to a mesoscale (a) and
 1247 submesoscale (b) vertical oscillation (respectively of amplitude δz^m and δz^s). Lower panels: a tracer with no
 1248 sink-source term is subjected to a mesoscale (c) and submesoscale (d) vertical oscillation, with a diabatic redis-
 1249 tribution of tracer through shear driven mixing (purple arrows). In all panels, the horizontal direction represent
 1250 time, increasing from left to right. Positive (resp., negative and null) tracer concentration anomalies ($\delta\tau$) relative
 1251 to the parcel depth are represented with green (resp. orange and white) colors. + and - symbols also provide
 1252 indications on tracer anomalies (resp. positive and negative). In limit case 2, submesoscale oscillation have a
 1253 lesser impact than mesoscale ones while the opposite may be true in limit case 3 if submesoscale oscillations are
 1254 more effective to produce shear-driven turbulence.