

Finite Size Lyapunov Exponents: Background Theory and Direct Observations

Francesco Nencioli

F. d'Ovidio, A. Doglioli, A. Petrenko

December 2010

OUTLINE

1. Mathematical Background:
 - Dynamical Systems
 - Lyapunov Stability
 - Stable/Unstable Manifolds
 - ...

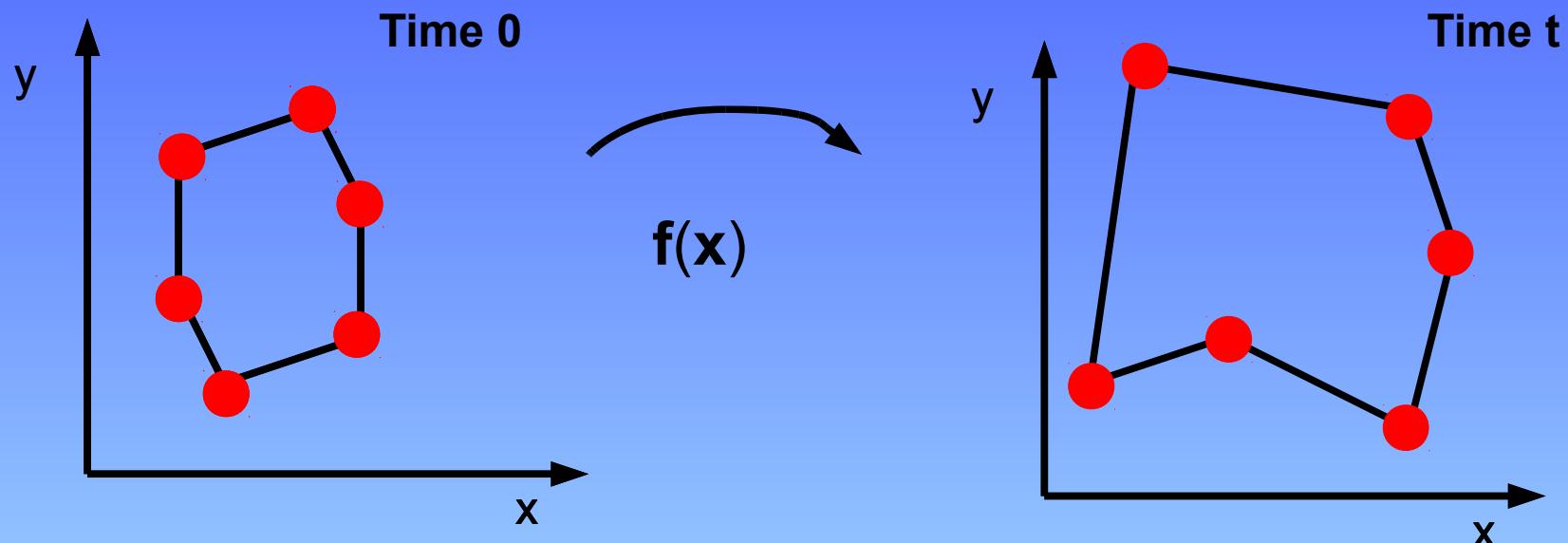
2. FSLE from satellite derived velocities
3. In-Situ Measurements (Latex10)

Basic Definitions

Dynamical System :

Mathematical formalization for any fixed "rule" which describes the time dependence of a point's position in its ambient space

$$\mathbf{f}(\mathbf{x}) = \begin{pmatrix} f_1 = (x_1, \dots, x_n) \\ \vdots \\ f_n = (x_1, \dots, x_n) \end{pmatrix} \quad \mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$



Basic Definitions

Map/Flow :

Rule determining the evolution of the points with time

Space State :

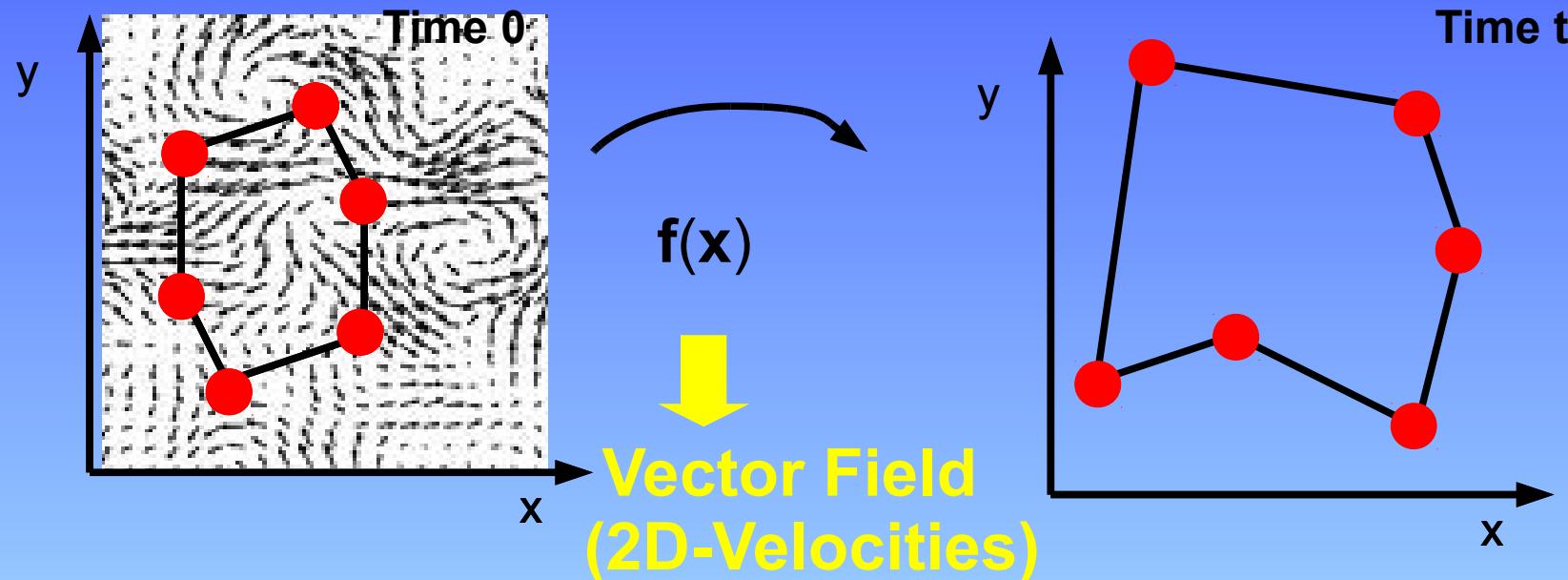
All possible states of the system

$$\frac{dx}{dt} = f(x)$$

$$x(t) = x(0) + \int_0^t f(x) dt$$

Trajectory :

Temporal ordered collection of successive states



Basic Definitions

- Velocity field \rightarrow Turbulence \rightarrow Chaotic Flow

Important structures/informations on the characteristics
(mixing) of the flow from stability analysis of the
dynamical system around fixed points

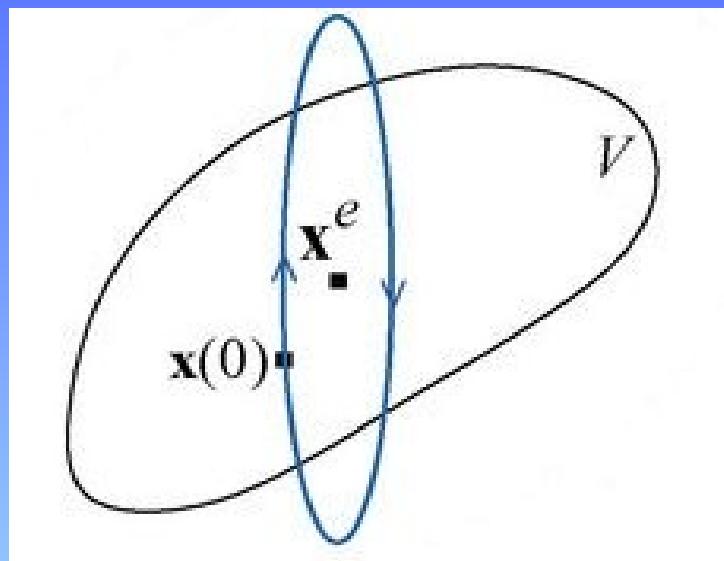
Basic Definitions

Fixed or Equilibrium point : \mathbf{x}^e

- Constant position in time $\mathbf{x}(t) = \mathbf{x}^e$
- Vector field is 0 $\frac{d\mathbf{x}^e}{dt} = \mathbf{f}(\mathbf{x}^e) = 0$

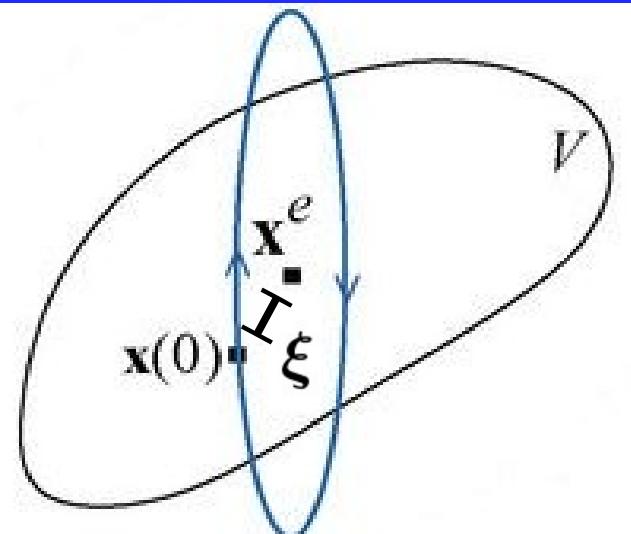
Lyapunov Stability :

- Fixed point is a stable equilibrium point if trajectories of any point around it remain close to it with time
- Asymptotic stable
- Exponentially stable
- Unstable



Stability Analysis

Linearization :



$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x})$$

$$\frac{d(\mathbf{x}^e + \boldsymbol{\xi})}{dt} = \mathbf{f}(\mathbf{x}^e + \boldsymbol{\xi})$$

$$\frac{d\mathbf{x}^e}{dt} + \frac{d\boldsymbol{\xi}}{dt} = \mathbf{f}(\mathbf{x}^e) + J(\mathbf{x}^e)\boldsymbol{\xi} + \mathcal{O}(|\boldsymbol{\xi}|^2)$$

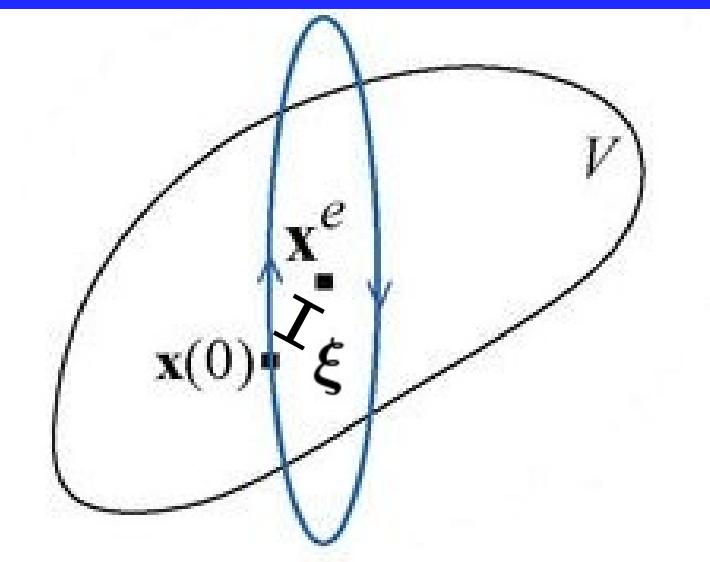
$$\frac{d\boldsymbol{\xi}}{dt} = J(\mathbf{x}^e)\boldsymbol{\xi}$$

$$J(\mathbf{x}^e) = \left(\frac{\partial f_i}{\partial x_j} \right) \bigg|_{\mathbf{x}=\mathbf{x}^e} = \left(\begin{array}{cccc} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{array} \right) \bigg|_{\mathbf{x}=\mathbf{x}^e}$$

**Jacobian
matrix**

Stability Analysis

Linearization :



$$\frac{d\xi}{dt} = J(\mathbf{x}^e)\xi$$

Solution to ODE

$$\xi(t) = \xi(0) \exp^{\lambda t}$$

Eigenvalues of J can tell if the fixed point is stable or not

$$\det[J(\mathbf{x}^e) - \lambda I] = 0$$

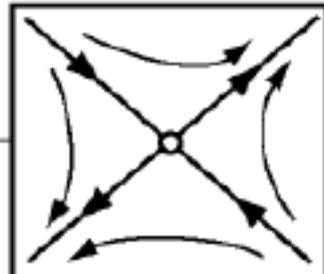
- Real or imaginary
- Positive or negative

Stability Analysis

eigenvalues

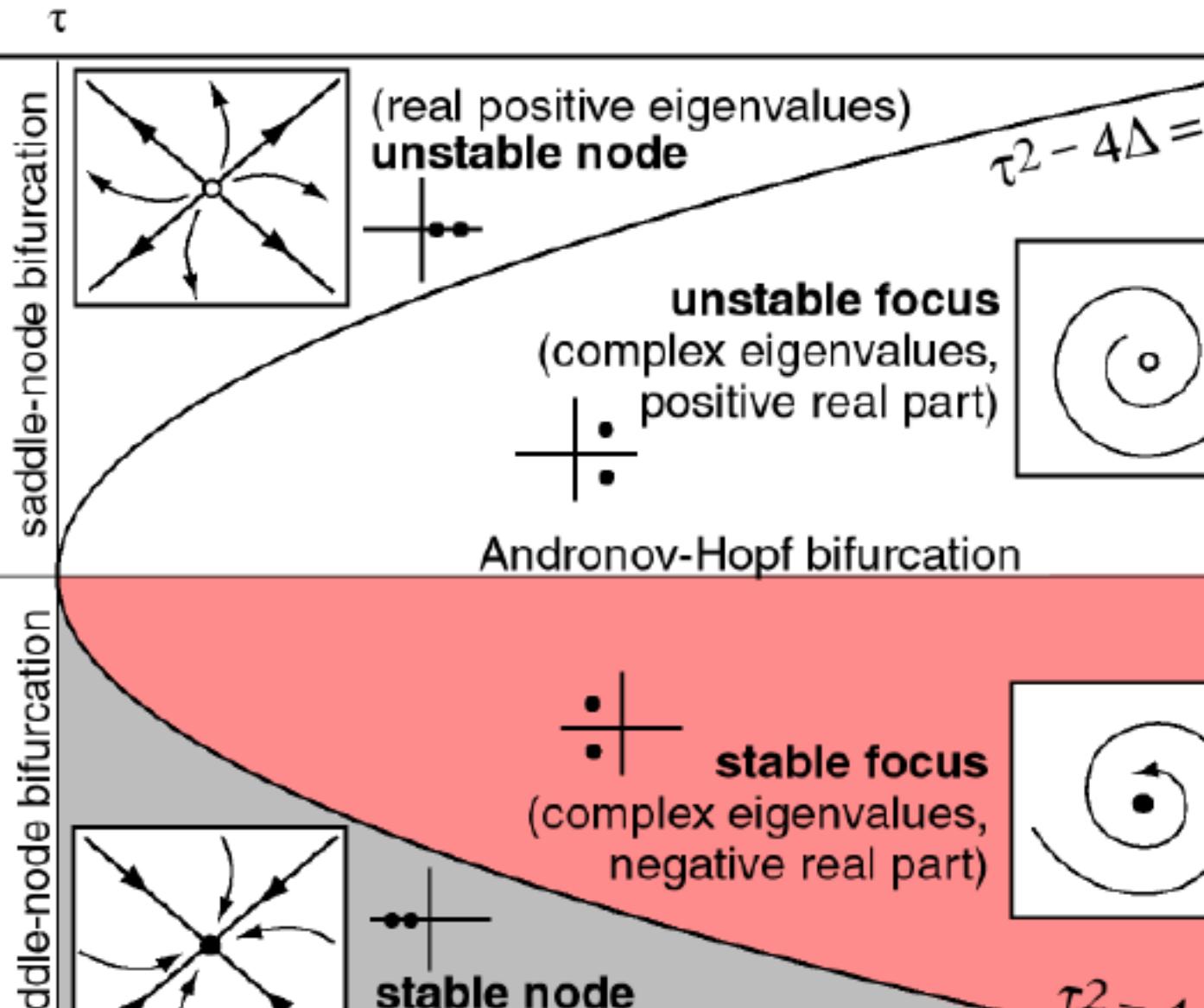
Hyperbolic

$$\nabla \cdot \mathbf{u} = 0$$

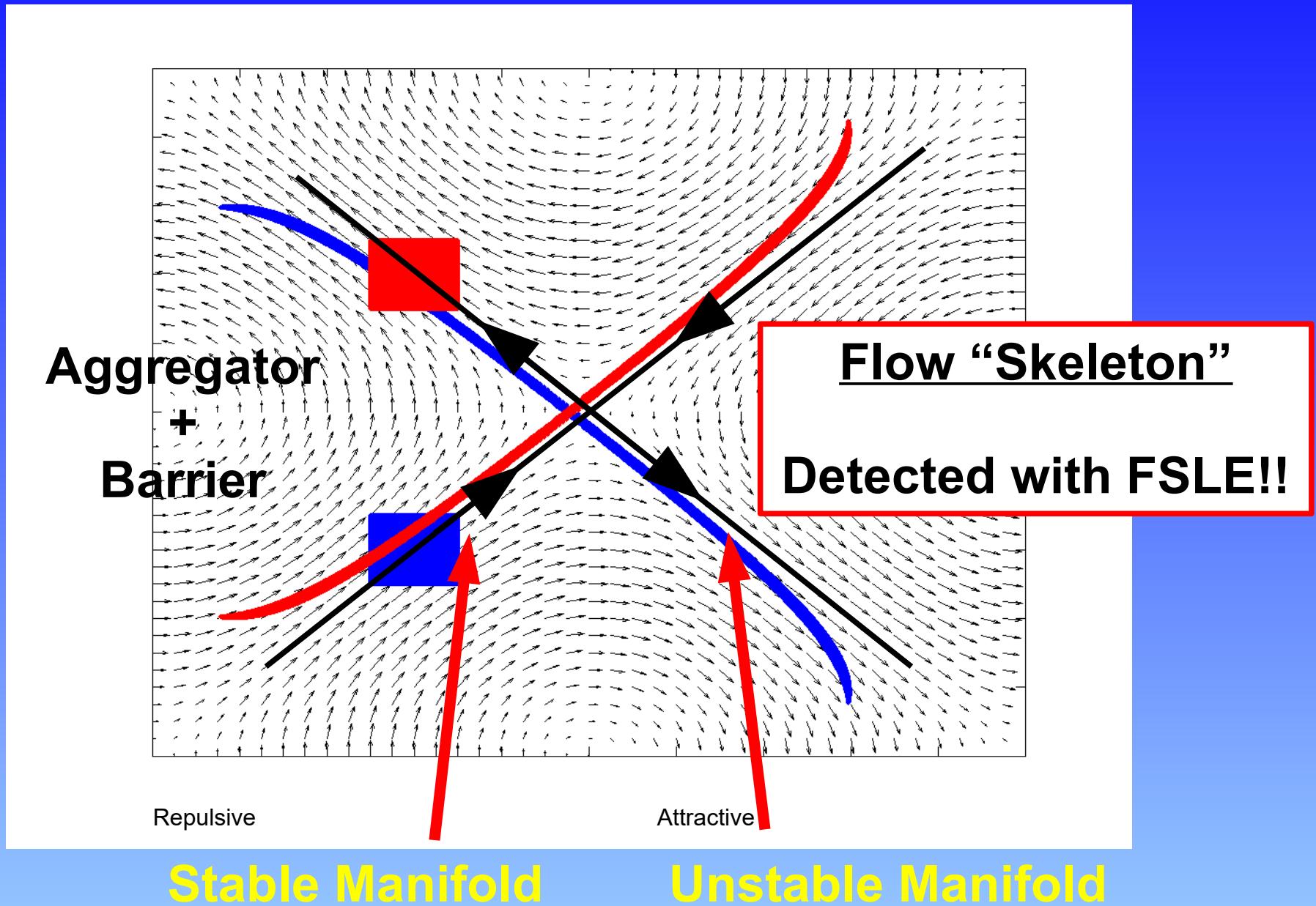


saddle

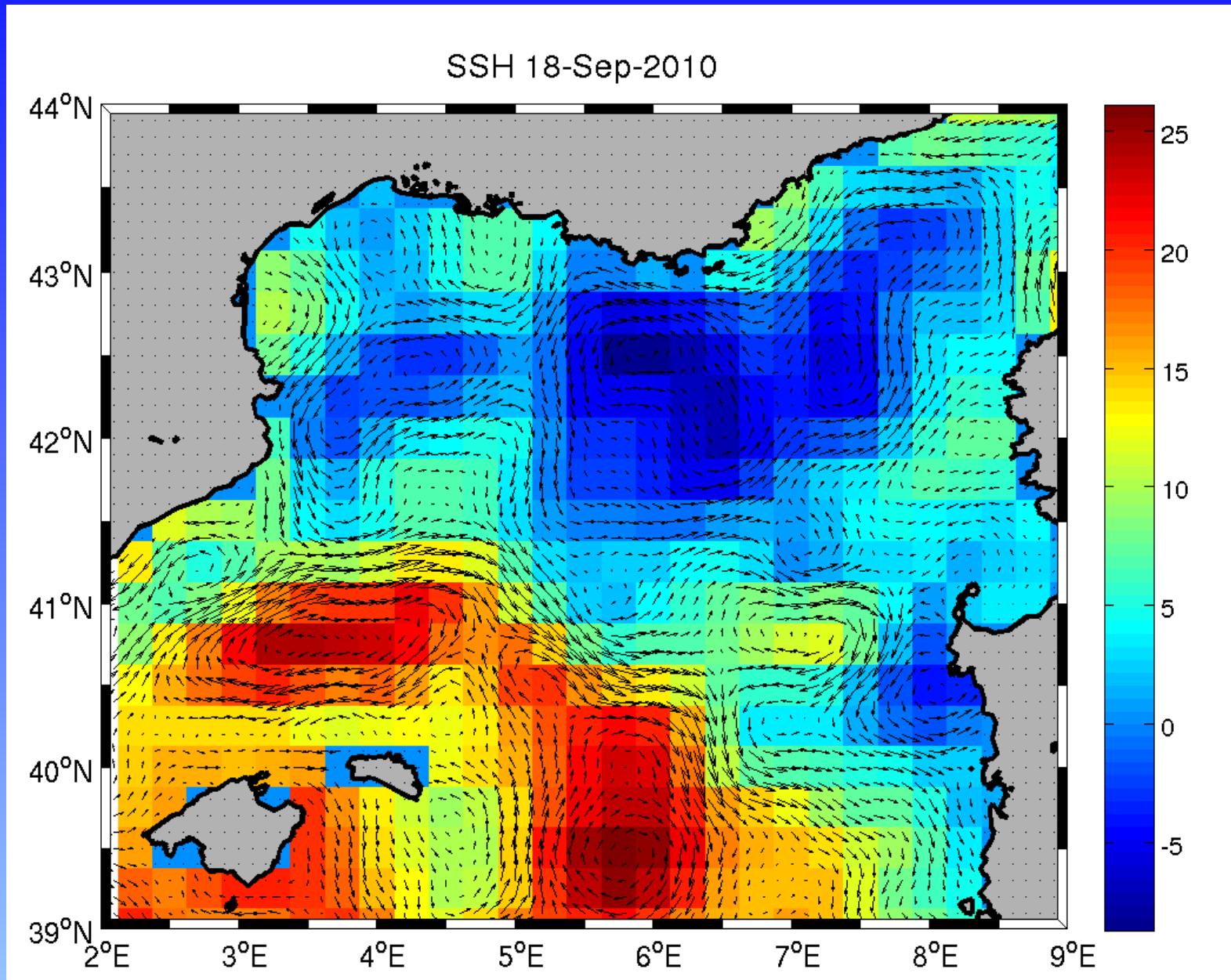
eigenvalues, different signs)



Hyperbolic Points

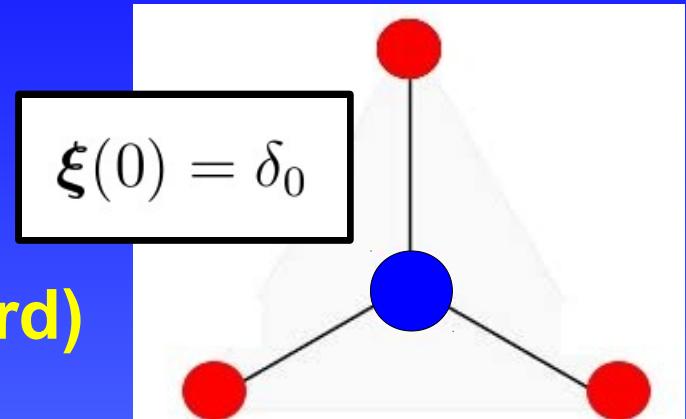


Finite Size Lyapunov Exponents



Finite Size Lyapunov Exponents

- At each grid point deployed an array of four floats
- Advected in time (forward or backward) with a Runge-Kutta 4th order (linear spatial and temporal interpolation)
- Recorded the time (τ) at which one of the distances becomes larger than a fixed spatial threshold (fixed size)
- Lyapunov exponent is the inverse of that time



$$\xi(0) = \delta_0$$

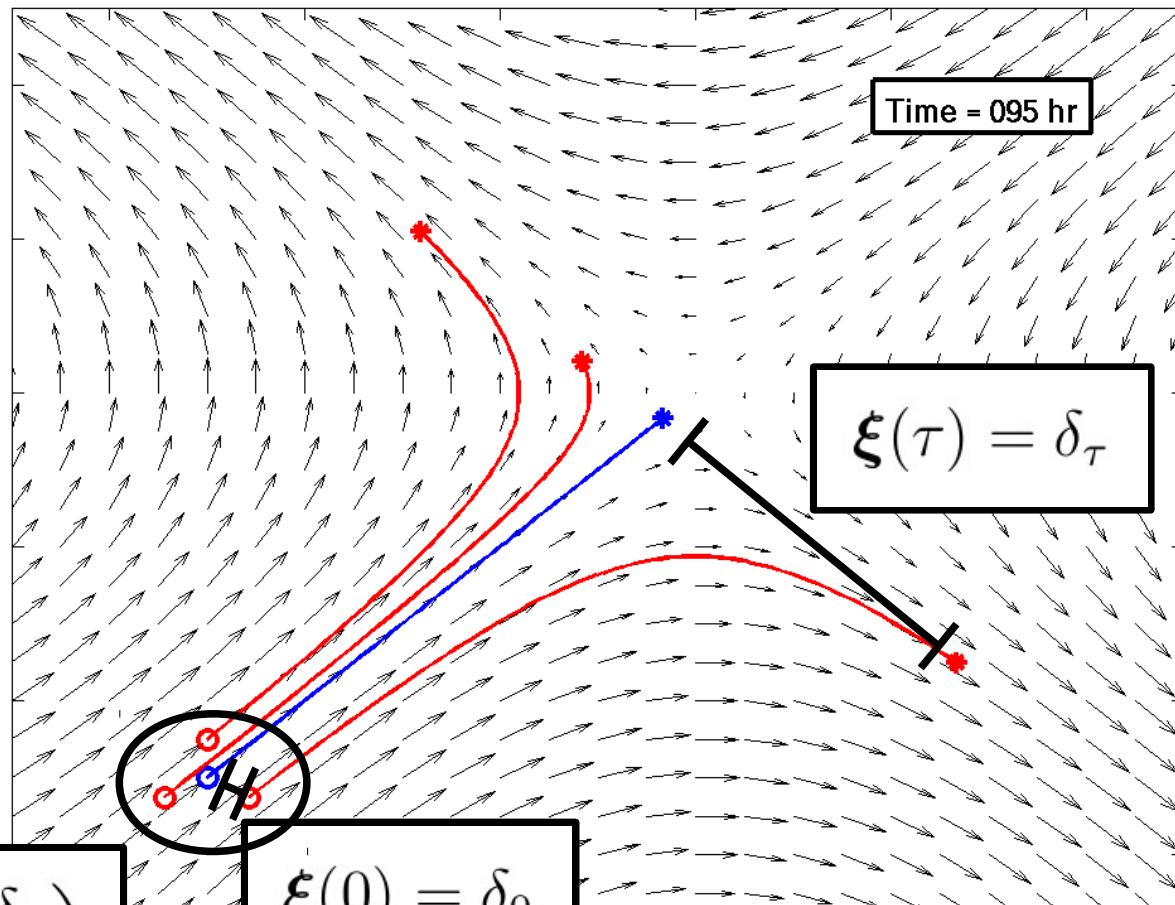
$$\xi(\tau) = \delta_\tau$$

$$\xi(t) = \xi(0) \exp^{\lambda t}$$

$$\delta_\tau = \delta_0 \exp^{\lambda \tau}$$

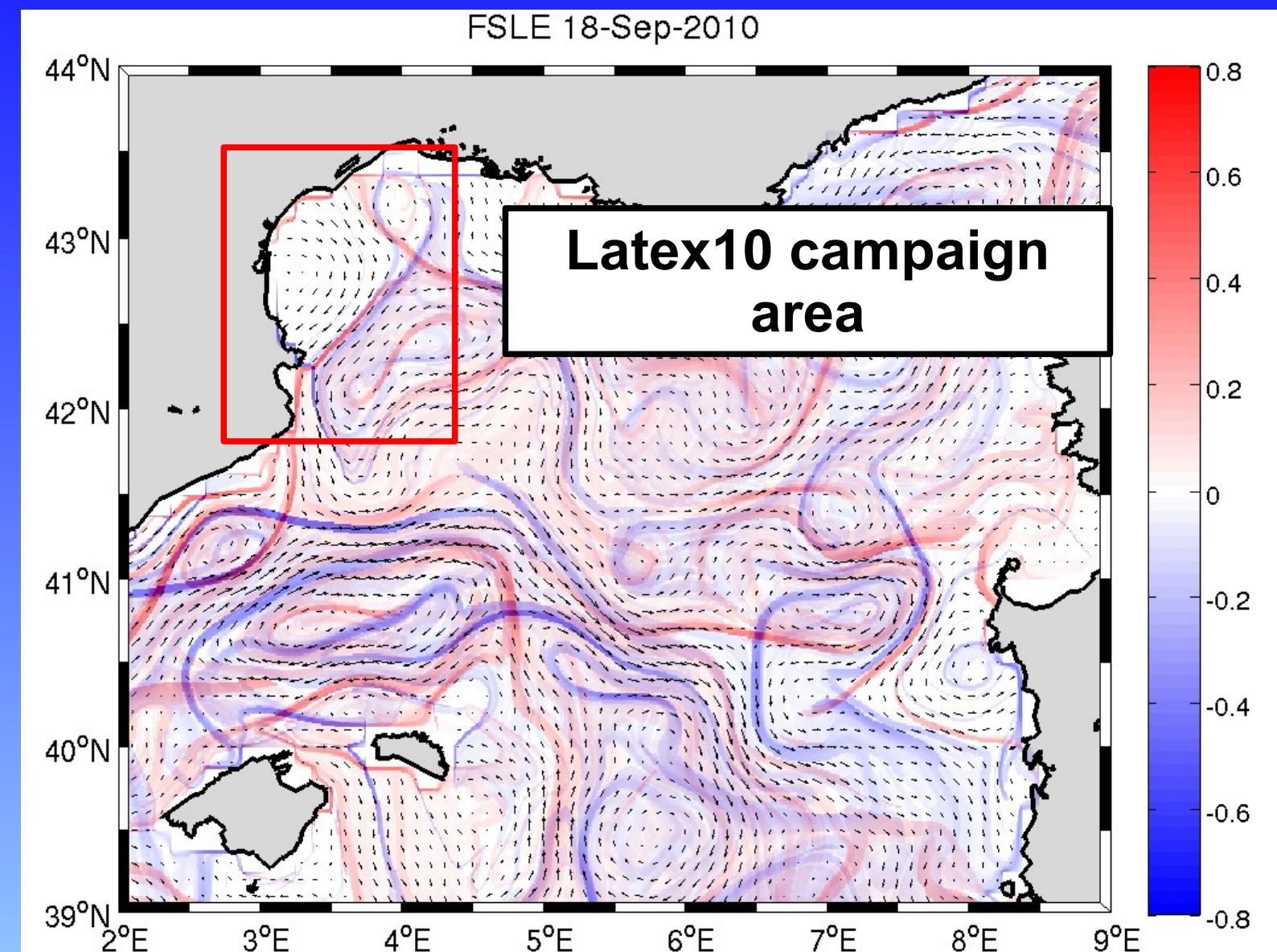
$$\lambda = \frac{1}{\tau} \log \left(\frac{\delta_\tau}{\delta_0} \right)$$

Finite Size Lyapunov Exponents



$$\lambda = \frac{1}{\tau} \log \left(\frac{\delta_\tau}{\delta_0} \right)$$

Finite Size Lyapunov Exponents



Blue:
- Unstable
- Backward
(from saddle)

Red:
- Stable
- Forward
(to saddle)

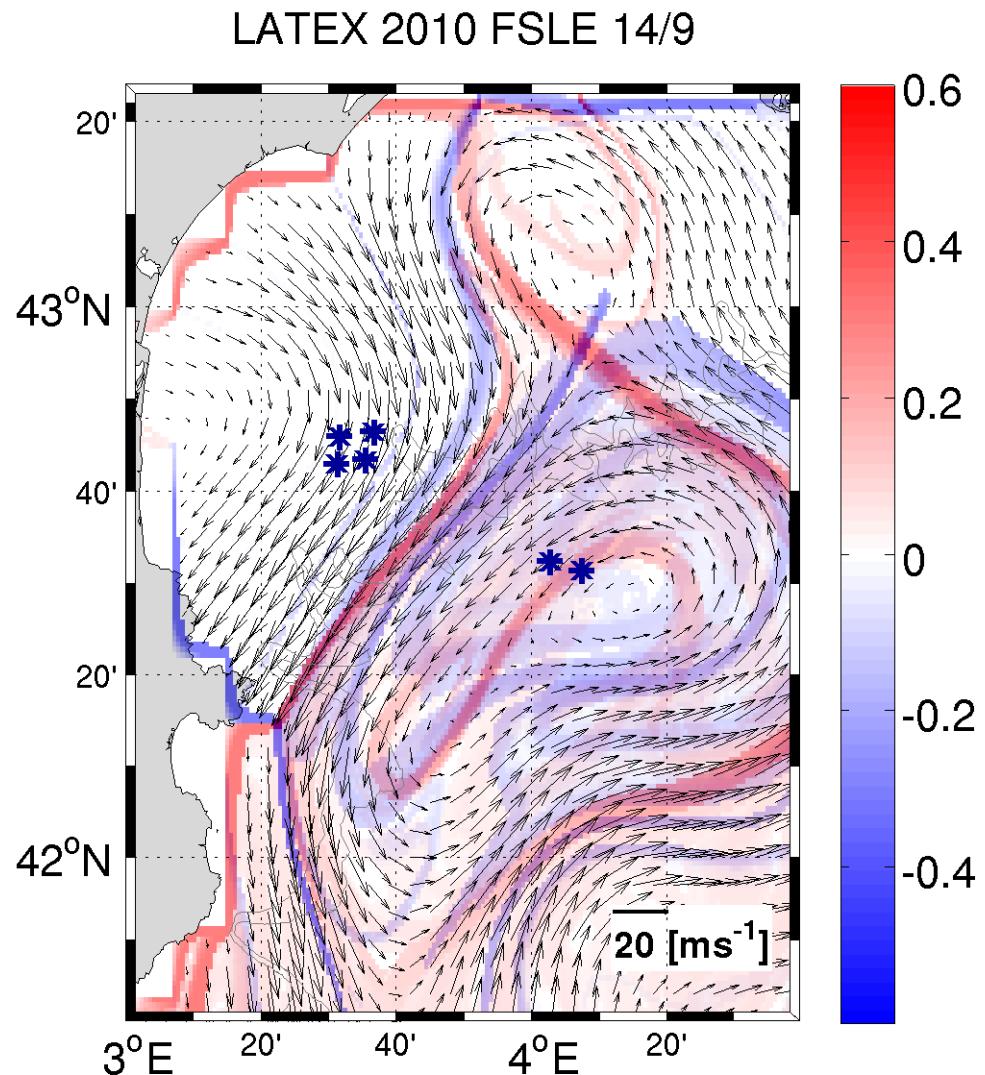
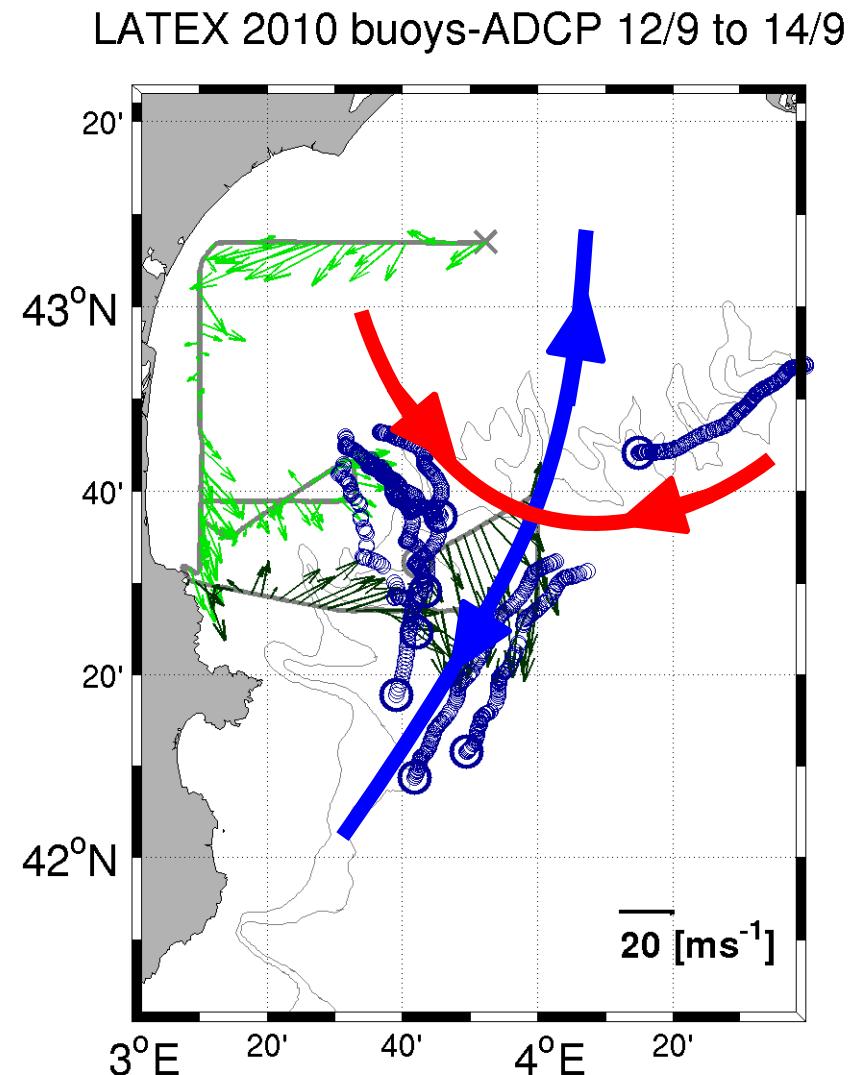
Latex10 Campaign

September 2010 “Lyap” experiments:

Direct observations of the manifolds computed from satellite velocities:

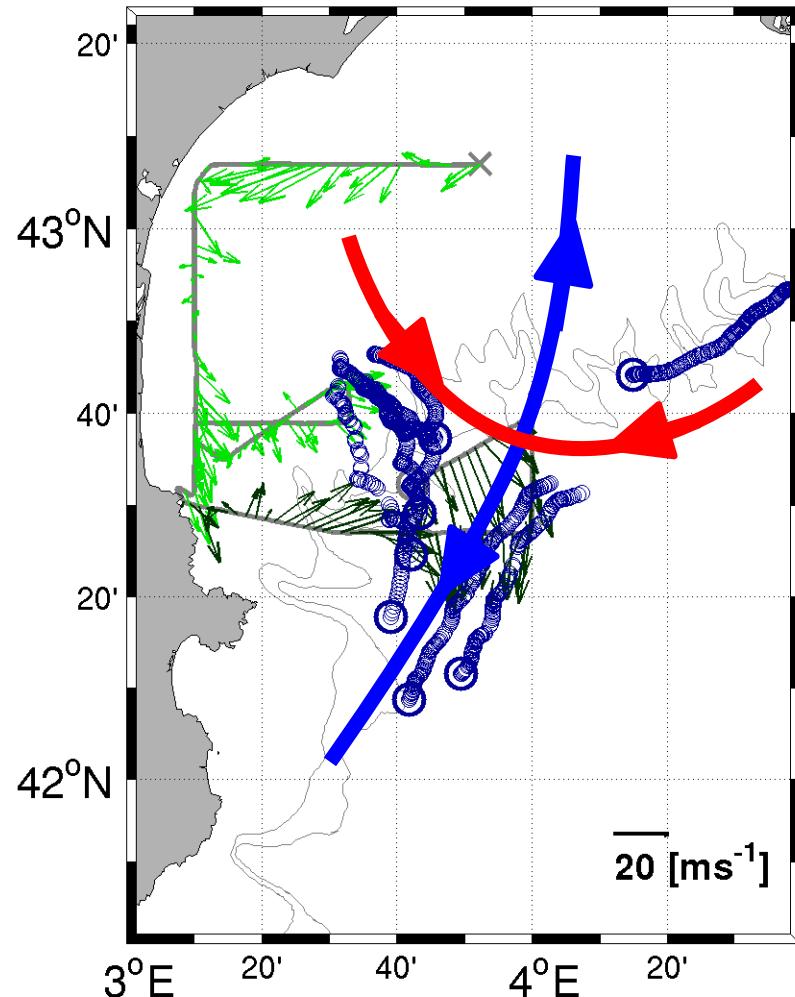
- Lagrangian drifters (15 m; ARGO GPS)
- ADCP velocities (Real time)

Lyap01 in LATEX

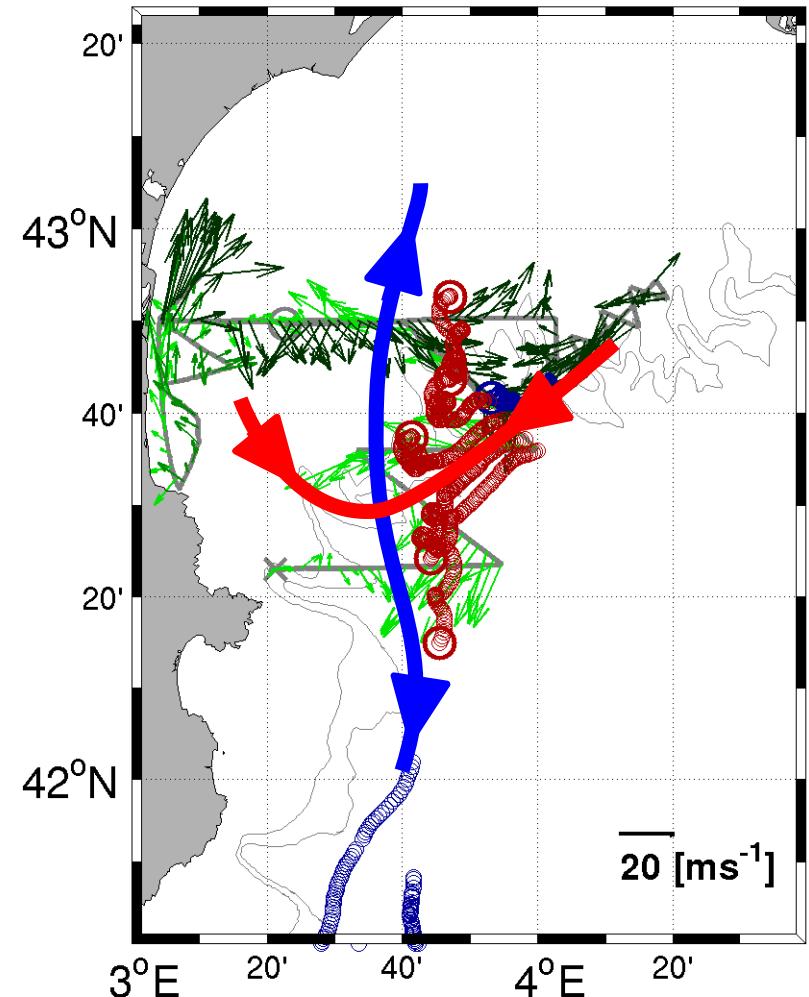


Lyap02 in LATEX

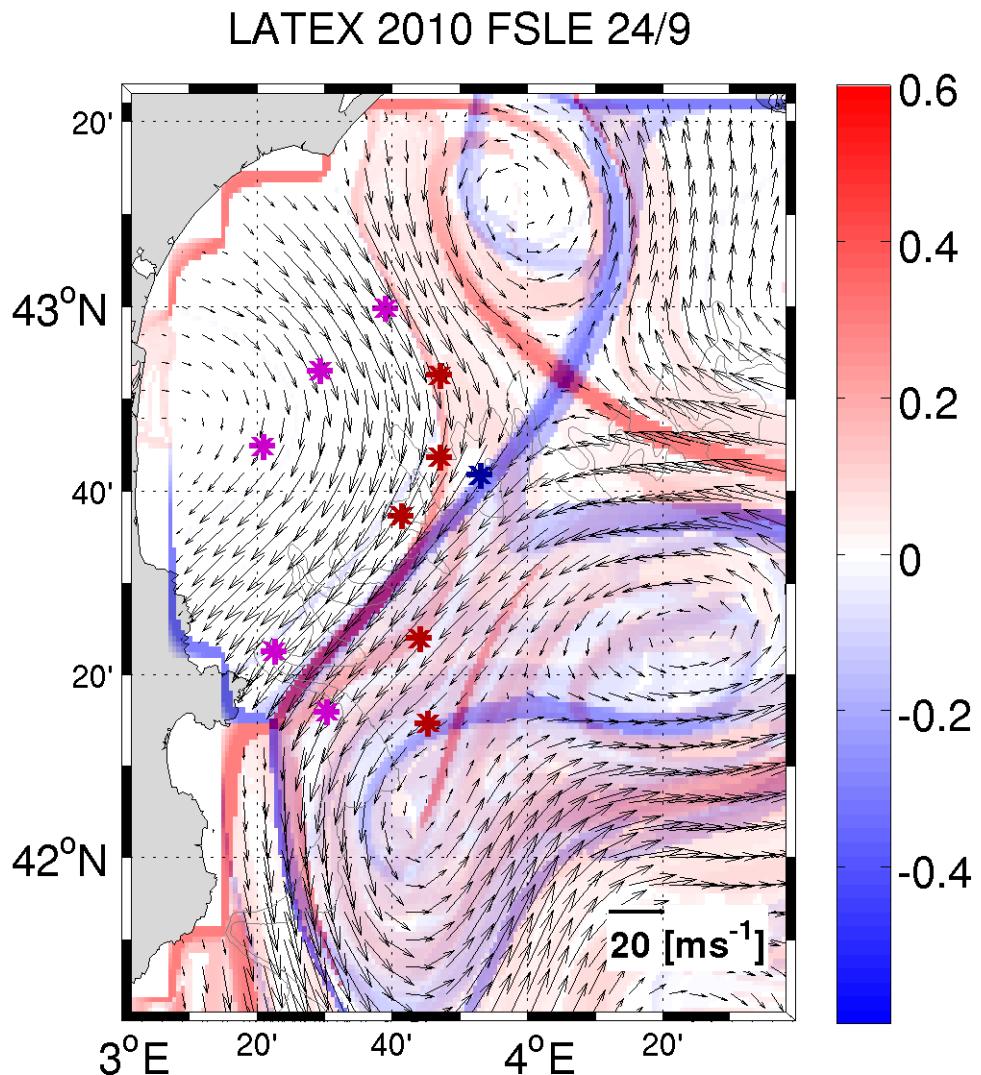
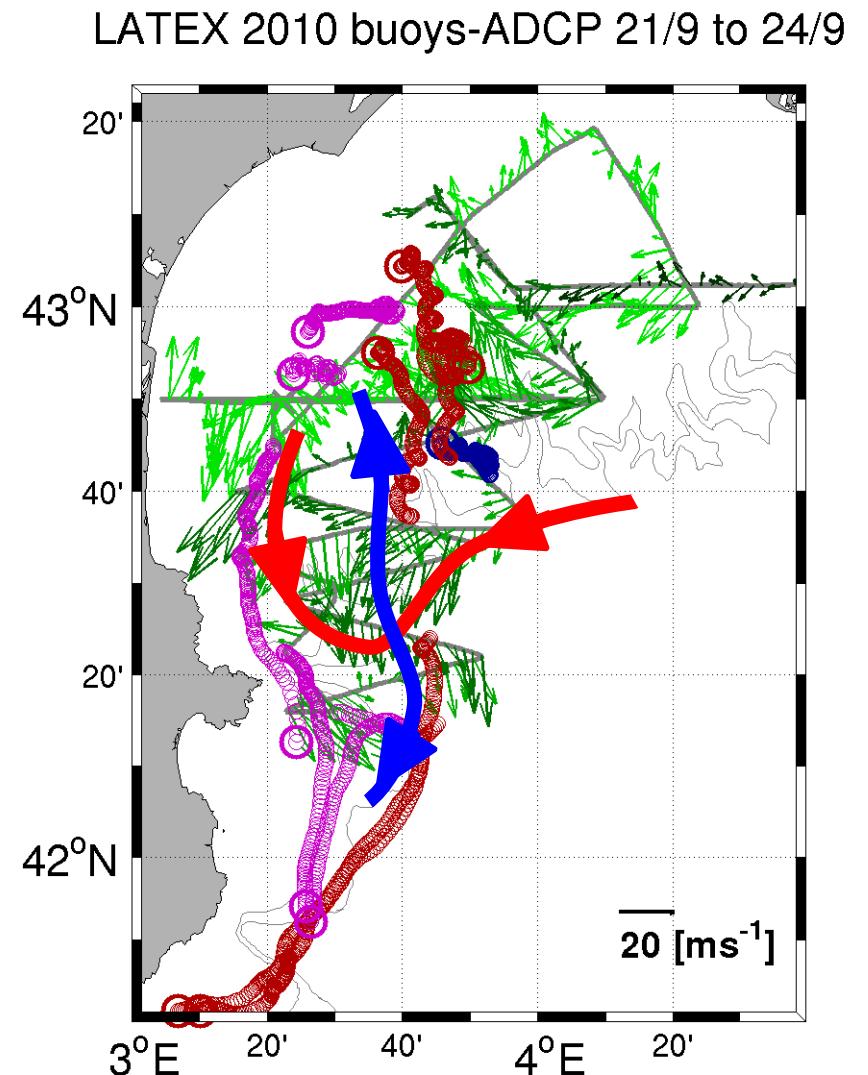
LATEX 2010 buoys-ADCP 12/9 to 14/9



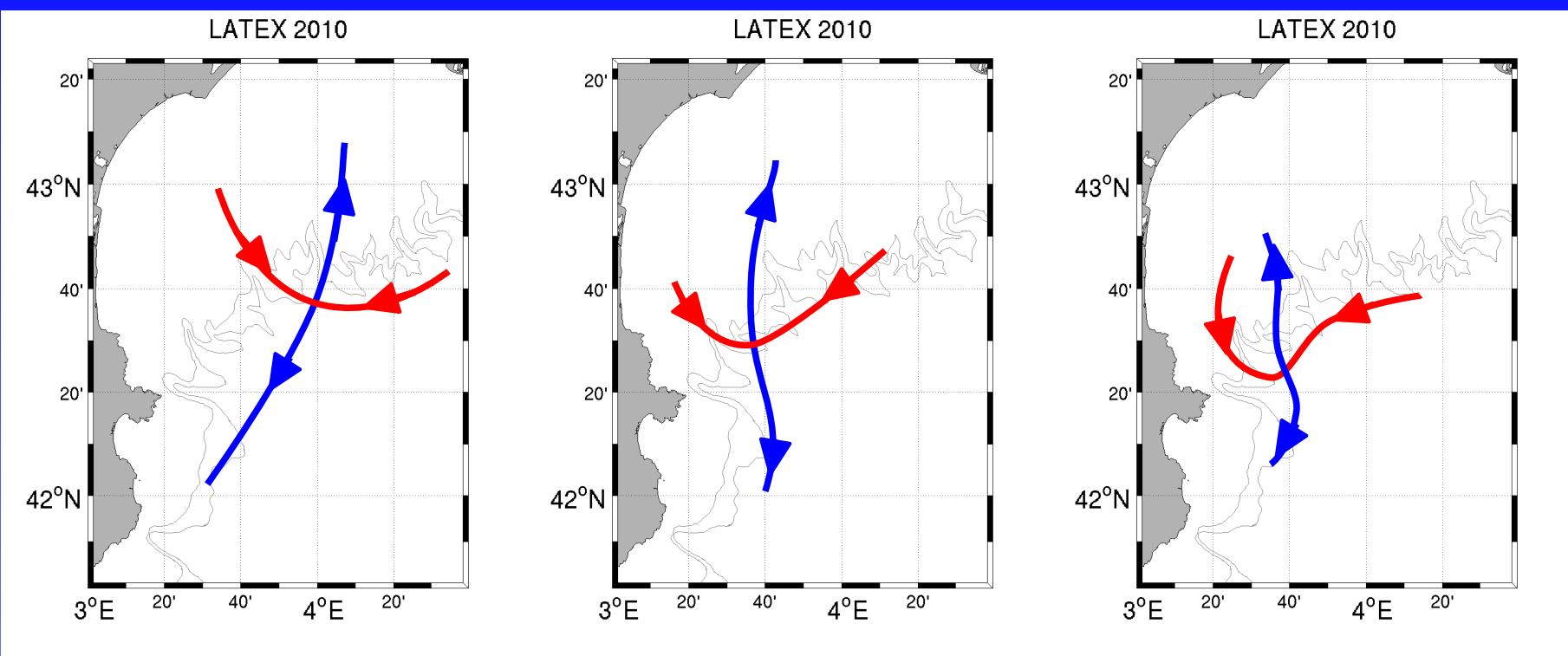
LATEX 2010 buoys-ADCP 18/9 to 20/9



Lyap03 in LATEX

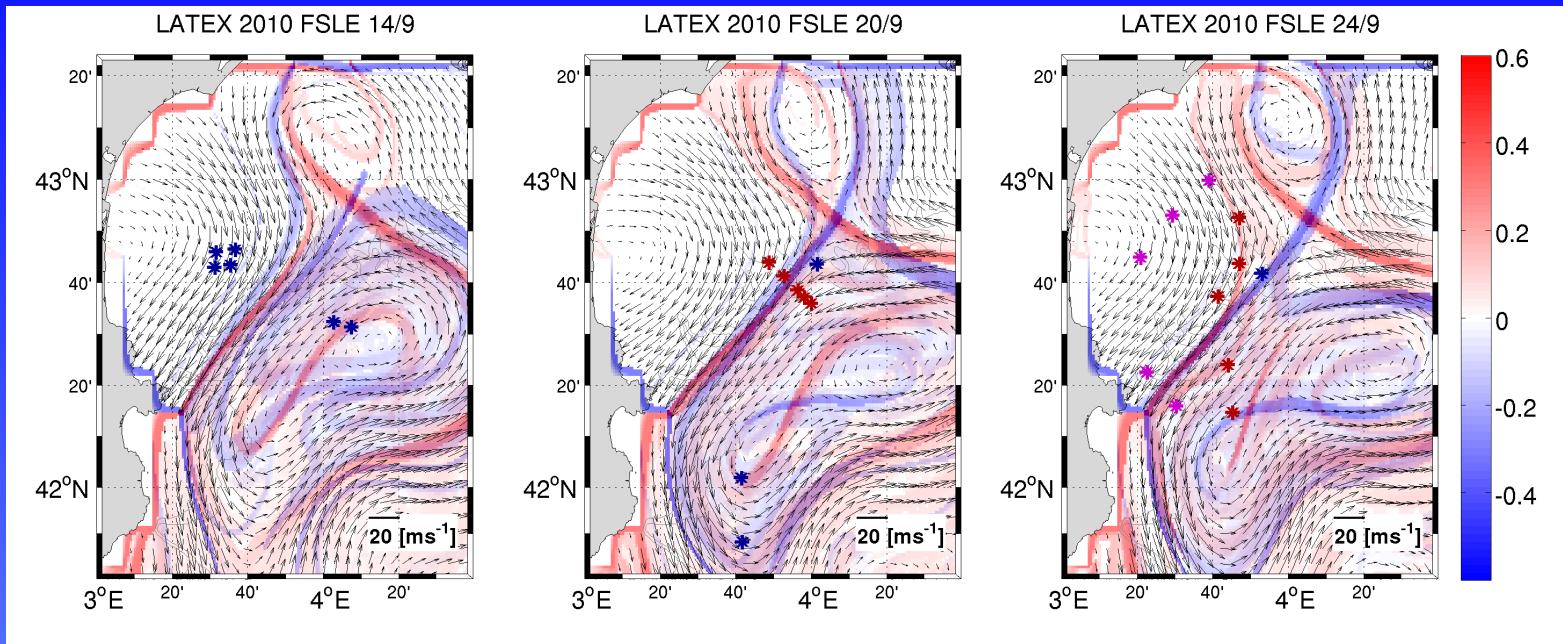


Conclusions



- Persistent manifolds on continental shelf
- Hyperbolic point migration
(1/3 Deg in 6 days \Rightarrow ~ 5 cm/sec)
- Detectable with drifters + ADCP

Conclusions



Satellite velocities:

- **Good for large scale**
- **Not so good in the coastal region**
- **Largest limitation for the method**

Future Work

- Improve satellite velocity field:
 - Different processing schemes for raw data
 - Add ageostrophic components (Ekman, NIO...)
 - HF Radar velocities??
- Numerical models:
 - Test corrections
 - Verify hypotheses
 - Forecast models??
- Analysis of previous Latex datasets
- Further Lyap experiments???

Final goal

Method for estimate and predict transport/exchanges
(pollutants, oil spill, larval transport, fisheries)

Alexandr Lyapunov
(June 6 1857 – November 3 1918)

FIN