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ABSTRACT

Advances in analysis of particle scattering and absorption have improved understanding of how
suspended particles influence the light field and the resulting ocean color signature. These advances
enable algorithms which uncouple the spectrum into spectral backscattering, detritus absorption,
colored dissolved organic matter, and chlorophyll. Future algorithms will determine linkages between
optical components beyond merely the suspended particulate matter (SPM) product, including the
influence of particle size, shape, refraction, stratification, and composition. This paper examine
historical progress in research on space-based SPM observations; evaluate the status of current
algorithms and models; describe user community interest in SPM data products; and discuss strategies
to promote publically-available SPM data products.

1.0 INTRODUCTION

In the Coastal Zone Color Scanner era (1978-1986), coastal waters were observed as "turbid" areas with
high particulate concentrations. At that time, it was recognized that quantifying suspended matter (SPM)
concentration posed a challenge at least as difficult as the accurate determination of chlorophyll concentration in
"Case 2" (Morel and Prieur 1977) waters (turbid, coastal). The pronounced color signature from sediments
suggested a future potential capability to observe coastal marine sediment transport and to quantify SPM
concentrations with improved ocean radiance sensors.

With the CZCS future now transformed to the present, it has become apparent that accurate "global"
determination of SPM concentrations still remains a future goal. SPM products from the Moderate Resolution
Imaging Spectoradiometer (MODIS) and for the Visible and Infrared Imaging Radiometer Suite (VIIRS) slated for
the National Polar Orbiting Environmental Satellite System (NPOESS) have been abandoned since "universal" SPM
algorithms are not currently available. Currently, only "regional" SPM algorithms are implemented in areas with
similar particle characteristics and where SPM products can be validated. Hopes for "universal" algorithms must
thus be based on emerging research in particle optical properties.

Despite the abandonment of effort (at the time of this writing) to author global or universal SPM
algorithms, considerable success in SPM estimation has been demonstrated with data from a variety of sensors with
varying radiometric accuracy and sensitivity and various spatial and temporal resolutions. Landsat, SPOT, the
Advanced Very High Resolution Radiometer (AVHRR), the Sea-viewing Wide Field-of-view Sensor (SeaWiFS)
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and MODIS have all provided data that have been used for accurate SPM estimation in specific applications and
settings.

This paper briefly examines several aspects of this topic. A historical overview highlights selected research
papers with the goal of illustrating progress in the determination of SPM concentration. This overview is followed
by a review of the current status of SPM algorithms and models, and a description of selected applications
illustrating the interest in — and need for — accurate SPM data products. Note that this paper cannot present a
comprehensive treatment, and therefore any exclusion of papers from mention here does not represent a judgment of
quality or appropriateness. Rather, the papers that are cited here should be viewed as illustrative of the progress of
research on this important topic.

2.0 HISTORICAL OVERVIEW

Prior to the launch of CZCS in 1978, Kritikos (1974) described the use of ERTS-A, more commonly
known as Landsat 1, data for SPM analysis. Munday and Afoldi (1979) discussed the use of reflectance models for
Landsat data for SPM measurement. Prior to the CZCS mission, Morel and Prieur (1977) provided the widely-
known Case 1 and Case 2 water classification schema, and subsequently Holyer (1978) discussed progress toward
universal multispectral suspended sediment algorithms, which seems optimistic in retrospect.

The CZCS was the first satellite-borne sensor with radiometric sensitivity designed for the marine
environment. CZCS thus provides the first data from which marine SPM concentrations could in theory be
estimated. CZCS imagery provided several striking examples of marine suspended sediments — one of the most
notable was an image of the Po River (Italy) sediment plume acquired on October 9, 1984 acquired on the same day
that this region and feature were photographed by astronauts on the Space Shuttle (Figure 1). This particular image
is also an excellent example of how high SPM erroneously influenced CZCS pigment retrievals in sediment-laden
Case 2 waters. Initial efforts to quantify SPM with CZCS data relied on empirical regression algorithms similar in
form to algorithms used to calculate chlorophyll concentration. Noteworthy in this regard are Viollier and Sturm
(1984), Amos and Topliss (1985), Tassan and Sturm (1986), Stumpf and Pennock (1989), and Topliss et al. (1990).
Clark et al. (1980) described a reflectance ratio sediment algorithm for CZCS data.

Figure 1. The Po River sediment plume entering the northern Adriatic Sea, acquired on October 9,
1984. (left) CZCS image (right) Astronaut photograph from the Space Shuttle. In the CZCS image, note that
the brightest part of the plume is interpreted as land (black mask). Red indicates high pigment concentration,
likely erroneous here due to high SPM concentration.



SeaWiFS, launched in 1997, provided a long-awaited improved radiometric capability for marine remote
sensing, and also provided near-daily ocean coverage. Empirical algorithms utilizing reflectance ratios were
proposed for SPM estimation using SeaWiFS data, in particular Wernand et al. (1998) and Doxaran et al. (2003).
The launch of MODIS on the Terra satellite in 1999 and on the Aqua satellite in 2002, the latter following the
launch of the Medium Resolution Imaging Spectroradiometer (MERIS) on Envisat by two months, gave advanced
radiometric capability to oceanographic remote-sensing scientists (Figure 2). In the late 1990s and the first years of
the 21* century, India, China, Korea, and Taiwan also launched satellites with ocean color sensors capable of
providing data for SPM determination. With the current plethora of sensors, the ability to accurately determine SPM
concentrations should be enabled. The following section discusses the primary approaches under research for SPM
determination.

Figure 2. (left) SeaWiFS image of sediments in the East China Sea, stemming in part from the Yangtze and
Qianliang rivers. (right) MODIS image of the outflow of the Ganges River into the Bay of Bengal.

3.0 EVOLUTION AND STATUS OF SPM ALGORITHMS
There are two varieties of SPM algorithm under examination: empirical models and semi-analytical models.
3.1 EMPIRICAL ALGORITHMS

Two empirical regression methods have been employed to convert remote sensed data into SPM data in the
coastal zone:
e the direct calibration method, which consists in comparing remotely sensed data and SPM
experimental data (e.g. Baban 1995),
e the indirect calibration method, consisting in a comparison of in situ reflectances (or normalized
water-leaving radiances, nLw) measured by a field radiometer, and SPM experimental data.

The indirect method is based on relationships between SPM and single-channel or multi-channel remote-
sensing reflectance (R). The equivalent reflectance, equivalent to that which is estimated from satellite
measurements, is obtained by integration of the reflectance spectral values weighted by the sensor sensitivity
function.

Regressions between equivalent reflectances and SPM were thus proposed for CZCS, TM or MSS by Viollier
and Sturm (1984), Ritchie and Cooper (1988), Lathrop and Lillesand (1989), Stumpf and Pennock (1989), and You
and Hou (1992); for NOAA/AVHRR by van Raaphorst ef al. (1998); for SPOT XS by Forget and Ouillon (1998),
Froidefond et al. (2002), and Doxaran et al. (2002); and for SeaWiFS by Robinson et al. (1998), Ahn et al. (2001),
and van der Woerd and Pasterkamp (2004).



At the smallest wavelengths (around 550 nm), the remotely-sensed signal saturates at high turbidity: around
60 mg/l at 450 and 650 nm (Larouche ef al. 2003), around 30 mg/1 at 550 nm (van der Woerd and Pasterkamp 2004),
and around 60 mg/1 at 650 nm (Lehner et al. 2004).

The main factors explaining reflectance sensitivity to changes in SPM are particle size (Holyer 1978, Han
and Rundquist 1996), particle shape (Ferrier 1995), sediment type (Novo ef al. 1989) and concentration range
(proceedings papers quoted by Novo et al. 1991; Bhargava and Mariam 1991). The optimum wavelength for SPM
quantification (whatever the sediment size or type) is likely to depend on the concentration range.

3.2 SEMI-ANALYTICAL ALGORITHMS

The semi-analytical algorithm approach consists in connecting reflectance (R) to the SPM concentration via a
simplified optical model by which R is expressed according to the inherent optical properties (IOPs) of absorption
(a) and backscattering (by) such as, at the first order: R = f X with X =b/a+by,. Gordon (2002) presents a review of
the simplified models. Kirk (1984) and Gordon (1989) show that f varies with the conditions of illumination (i.e.
primarily with the position of the sun by clear sky). Morel and Gentili (1991) demonstrate that f also depends on the
IOPs. Gordon et al. (1988) introduce the relation between R (R;s =R/Q) and X whose correlation appears better
between measurements and models that between R and X. This best correlation is justified a posteriori by Zaneveld
(1995) which shows that f is directly proportional to Q and that these two parameters follow similar tendencies when
the sun angle changes. Morel and Gentili (1996) show by modeling that f/Q varies less with the conditions of
illumination than f and Q.

When R is measured instead of R, the problem of the transformation from R to R, lies in the estimate of Q,
which is a variable parameter whose value is between 0.3 and 6.5 sr in theory (Morel and Gentili 1993). The value
of Q is estimated near to 3.5 sr for turbid waters (Bukata et al. 1988, Morel and Gentili 1993). Lee et al. (1998)
proposed an alternative to the model of Gordon et al. (1988) better adapted to turbid coastal waters: R =7 (0.070 +
0.155 X"7%) X. R is generally expressed under water and R, above. Thus by combining the simple models resulting
from works by Morel and Prieur, Gordon et al. or Lee et al., and the relationships at the interface (e.g. Morel 1980),
one can express R, and R according to X (see e.g. Ahn et al. 2001).

a and b, can be expressed as the absorption due to water, chlorophyll, and colored dissolved organic matter
(CDOM): a=a,, + a T a,, and backscattering can be expressed in terms of water, chlorophyll, and SPM: bb = by,
+ bpent + bys (Prieur and Sathyendranath 1981, Sathyendranath ef al. 1989, Roesler et al. 1989). To determine the
concentration in chlorophyll or in suspended sediment from this decomposition and from a simplified optical model
thus requires knowledge of the specific IOPs. A simplified optical model, including the formulation of some 1OPs,
can be used to determine parameters of water quality (see a review in Zhan ef al. 2003). To build semi-analytical
models specific to a site, authors performed field measurements of IOPs and sometimes simplified the basic semi-
analytical models by neglecting some IOPs on the basis of assumptions. They can alternatively use generic
formulations or measurements taken on other sites to express ignored IOPs and to supplement a model (e.g. Bowers
et al. 1998, Li et al. 1998, Forget ef al. 1999, Lahet ef al. 2000). Alternatively, remotely sensed dated can be used to
derive inherent optical properties rather than the content of chlorophyll, CDOM, and SPM. This approach is
described in Gould and Arnone (1997a, 1997b) and Gould et al. (2001).

3.3 ALGORITHM REFINEMENT

Benefiting from improvements in optical modeling and knowledge of the IOPs, empirical models are
evolving into semi-empirical models. Indeed, the form of the empirical relationship is selected on the basis of
simplified optical models and assumptions (e.g. Moore et al. 1999, Vasilkov et al. 1999, Zhan et al. 2003).
Moreover, inversion methods are not only used to describe the surface parameters, but also to describe the surface
layer in three dimensions (Arnone and Gould 1997b, Gould et al. 2001).

Recent studies focusing on different aspects of the SPM influence on the upwelling sea radiance will be of
help to improve the inversion methods regarding, for example:
e  the derivation of indirect parameters that are more suitable than the mass concentration of SPM in the
inversion procedure, such as the projected surface area of particles (Mikkelsen 2002) or several optical



parameters derived related to SPM, such as the turbidity (backscattering in the red or near-IR region), the
extinction coefficient, or even the “old” Secchi disk depth;

. the use of multispectral data to retrieve a profile of sediment concentration over superimposed
surface layers, using the property of wavelength-dependency of absorption by water (Ouillon 2003);
. the use of a color classification for coastal waters, so as to determine specific algorithms for each

color class, more suitable than a generic algorithm (Lahet ef al. 2001a, 2001 b); and

° the use of optical data to retrieve the bulk refractive index of particles (Twardowski et al. 2001) or
the grain size distribution (Boss et al. 2001), and the introduction of known refractive indices of rocks and
minerals in the inversion procedure (e.g. Kerr 1977).

4.0 APPLICATIONS OF SPM DATA PRODUCTS

Figure 3. SeaWiFS image of the Mid-Atlantic coast of the United States, acquired September 23, 1999.
Sediments generated by inland flooding caused by Hurricane Floyd are being transported into the Gulf
Stream. In addition, high sediment concentrations and discolored water are visible in the Pamlico and
Albemarle Sounds. The blackish-blue color of the coastal waters to the north of the sediment plume is due to
light absorption by chlorophyll in this pseudo-true color image.

The preceding discussion of the evolution of remotely-sensed SPM data products from the CZCS era to the
present day invites the dual questions: why is there interest in remotely-sensed SPM data products, and what could
these products be used for? The following discussion is a subset of current and/or potential applications of SPM data
products in the marine environment.

Perhaps foremost among applications is the potential capability of accurate SPM estimation to allow
improved deconvolution of the components of the remotely-sensed signal in Case 2 waters, leading to significant
improvements in the quantification of chl a concentration in the coastal zone. Coastal zone chl a concentrations are
commonly higher than in Case 1 waters (characteristic of the open pelagic ocean), and can be greater by orders of
magnitude. Since a large amount of primary productivity in the global ocean occurs in the difficult-to-quantify
coastal zone, improved estimation of chl ¢ in Case 2 waters is a paramount goal of ocean color research.

Improved estimation of chl @ in coastal waters is relevant to interest in the detection of harmful algal
blooms (HABs) and planktonic disease vectors, as in the case of cholera. There has been particularly high interest in
this application for countries adjoining the Yellow, East China, and South China Seas. In this region, the coastal
zone is highly turbid (Figure 2), and there has been an increased frequency of HABs, perhaps due to higher nitrogen



availability due to changing agricultural and land-use practices (Jeong 2003). The National Oceanic and
Atmospheric Administration (NOAA, USA) recently initiated a HAB monitoring and reporting system for the Gulf
of Mexico utilizing a chl a algorithm specifically tailored for the high SPM characteristics of this region (Stumpf
2003).

SPM concentration is a fundamental water quality parameter that is related to land-use practices and water
resource conservation, particularly for freshwater resources. The USA’s Clean Water Act has established total
maximum daily loads (TMDLs) for a large number of pollutants, one of which is SPM or turbidity. Ritchie and
Cooper (2001) describe the use of satellite data for TMDL monitoring of SPM. The availability of high-quality
radiometric data at spatial resolutions greater than 1 km (i.e., spatial resolution at scales between 10-100 and 100-
1000m) makes SPM determination in inland lakes and waterways increasingly feasible, with a direct impact on
water quality (Miller et al. 2005, this conference). At the 1km resolution common to SeaWiFS and MODIS, the
generation of coastal SPM plumes by inland flooding can be easily distinguished (Figure 3).

An additional application of SPM determination addresses the potential quantification of the contribution of
sediments to the marine carbon cycle. Coastal sediments can trap or otherwise sequester large amounts of organic
carbon, which can be released by sediment resuspension. Ongoing research by Gould and Arnone (described at
http://www.nrl.navy.mil/content.php?P=03REVIEW199) has investigated the cycling of particulate organic matter
and particulate inorganic matter along with CDOM and detritus on the northern Gulf of Mexico coast via optical
water mass classification. Gong et al. (2003) notes the necessity of improving chl a determination for the East China
Sea’s turbid shelf waters to improve estimates of annual primary production. Acker et al. (2002, 2004) discussed the
use of SPM determination using SeaWiFS data to quantify the hurricane-induced transport of carbonate sediments
produced on carbonate banks to the deep sea, where they will dissolve in deep ocean waters.

Military interests, particularly naval operations in the littoral zone, also have considerable interest in
accurate SPM determination with satellite remote sensing, but this interest may not be fully represented by
publications in the scientific literature. As an example, Oceanography and Mine Warfare (NAS Ocean Studies
Board, 2000) discusses one aspect of the use of remote-sensing for the detection of mines in shallow and turbid
waters. Other military applications include changes to shallow-water bathymetry due to nearshore sediment
transport, alteration of channel morphology in estuaries and harbors, and detection of natural or man-made hazards
to navigation.

Interest in SPM determination is also found in the commercial sector for a variety of applications. Recent
research (described at this conference) has investigated the use of remote-sensing data to observe transport and
deposition of sediments generated by dredging operations (Sipelgas et al. 2005, Odunsi 2005, this conference).
Remote sensing of varying spatial resolution from the kilometer-scale to the meter-scale has been used to examine
coastal erosion and beach alteration due to storm impact — while this has been commonly done with change
detection analysis, Waters ef al. (1997) described the use of the AVHRR reflectance product to assess turbidity
levels following hurricane landfall on the southeastern coast of the United States. The U.S. Geological Survey has
also maintained an ongoing monitoring program observing reflectance changes in Florida Bay, and has documented
high reflectance events following the passage of hurricanes and strong winter cold fronts likely due to sediment
resuspension. This program demonstrates the feasibility of utilizing an operational SPM product for monitoring
sediment transport in other locations where sediment mobility could impact commercial and recreational activities.
The routine use of SPM data by the commercial sector, however, is precluded for the most part by the absence of an
accurate, readily-available SPM data product.

5.0 CONCLUSIONS

This paper has discussed the historical progression of interest in satellite remote-sensing SPM data
products, and has provided a brief evaluation of the algorithm methods that have been used to create such products.
Interest in SPM data products remains high, as evinced by the disappointment of users who have queried the
Goddard Earth Sciences Data and Information Services Center (GES DISC) regarding the status of the provisional
MODIS SPM data product, which was never validated. Several research groups have created regional SPM data
products with high degree of accuracy (on the order of 25% error) — examples are described by Ruddick et al. (1998)
and Gohin et al. (2002). The research groups associated with these authors have operationally produced SPM
products utilizing SeaWiFS and MODIS data for Belgian coastal waters and the Bay of Biscay (France),



respectively, and other research groups around the world are involved in similar endeavours (e.g. Ouillon et al. 2004
with ETM+ data in a lagoon). As noted in Section 2.0, India, China, Taiwan, and Korea have all orbited an ocean
color sensor capable of providing SPM data products.

The implementation of "universal" (global) SPM algorithms will rely on further advances in analysis of
particle scattering and absorption, leading to improved understanding of how suspended particles influence the light
field and the resulting ocean color signature (as discussed in Section 3.3). These advances enable algorithms which
uncouple the spectrum into spectral backscattering, detritus absorption, CDOM, and chlorophyll. Future algorithms
will determine linkages between optical components beyond merely the SPM product, including the influence of
particle size, shape, refraction, stratification, and composition. It should also be noted that it is desirable to couple
the creation of an accurate global SPM data product with open and efficient data distribution, to allow the potential
user community the opportunity to apply and test such a data product. This model has been successful for the
refinement of remotely-sensed chlorophyll algorithms, and emulation of this model would encourage development
of the next generation of SPM algorithms.
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