Chapitre VI Devenir de la lumiére dans I’eau — qualitatif

A) Hypothése pour la mise en équation

- Principe d’interaction : repose sur I’hypothese d’une théorie linéaire de I’interaction de
la lumiére avec la mati¢re a un niveau phénoménologique. Ce principe d’interaction
comprend deux parties :

a) linéarité des phénomeénes radiatifs pour des « basses » énergies ( < 10'° W.m™). Cette
hypothese est nécessaire pour la mise en place des équations de Maxwell, ainsi que de
celles du transfert radiatif et des lois géométriques de réflexion, réfraction etc..

b) théorie phénoménologique : les mesures et les variables des équations sont au niveau
macroscopique (pour lequel I’optique géométrique est valable) sans expliquer les
processus se déroulant a plus petite échelle. Pa exemple, pour la diffusion, la VS sera
utilisée sans entrer dans le détail de I’absorption du photon et de sa ré-émission etc...

- Plans paralléles : I’eau est considérée comme homogéne et infinie a 1’horizontal. 11
n’existe pas de conditions aux frontieres pour des bords latéraux, suelemen pour le
fond.
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Fig. 4.1. Representation of a plane-parallel water body and the associated
coordinate system. [redrawn from Mobley and Preisendorfer (1988)]

B) Equation de transfert radiatif

Quand les photons franchissent I’interface air/mer et commencent a se propager dans la
colonne d’eau, ils peuvent étre absorbés, avec a le coefficient d’absorption; diffusés dans une
autre direction sans changer de longueur d’onde, avec b le coefficient de diffusion élastique;
ou diffusés en changeant de longueur d’onde, avec b’ notation choisie pour représenter le
coefficient de diffusion inélastique. Si Ion étudie le devenir de la luminance L, en se
concentrant sur des photons de longueur d’onde 1 sur une distance r donnée et dans une



direction spécifique notée &, les trois sortes d’événements décrits ci-dessus peuvent arriver et
sont des termes de perte : 1) —al, 2) -bL, et 3) — b'L. Mais, de méme, trois termes de gains
sont & prendre en compte décrivant : 4) une source potentielle de photons de cette longueur
d’onde 1 dans la direction § (L%); 5) une diffusion élastique (L°)ou 6) inélastique
(L") aboutissant a un ou des photons dans la direction & et de longueur d’onde 1.

Grace a cette approche intuitive des phénomenes (Mobley, 1994), on obtient I’équation de
transfert radiatif (RTE, « Radiative Transfer Equation » en anglais) suivante :
dar - ~(a+b+b )L+L + L +L
dr

1 2 3 4 5 6
Les chiffres de 1 a 6 correspondent aux 6 termes décrits dans le paragraphe précédent. Cette
RTE permet de calculer le devenir de la lumiére dans I’eau, quand sont connues a et b (b' est
souvent négligée).

Cette équation est en Wm™ sr' nm™.

Notation rapide : A quoi correspond 1’opération 1/dr ?

V = Dr/Dt = dr/Dt

1/dr=1/V 1/Dt

1/Dt = 1/dt + (V.grad) = 1/dt + V. = 1/dt + u. d/dx + v.d/dy + w.d/dz
1/dr=1/V.1/dt + §1. d/dx + &2.d/dy + &3.d/dz

les hypotheses sont telles que 1/dt = 0 + plans paralléles : d/dx = d/dy =0
donc 1/dr = §3.d/dz = cosB d/dz = d/dz

donc dL/dr = 4 dL/dz correspond a 1’équation précédente.

La loi de Beer, vue en fin de chapitre 5, correspond au cas idéalisé :
- sans source L°
- sans diffusion inélastique L* (et a' = 0)
- sans diffusion élastique L'  (etb=0)

D’ou :

dL /dz=-a/p L ou L=L(z=0)e **=

I0Ps - - AOPs  Probléme direct
é

Probléme inverse
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C) Méthodes de résolution de I’équation RTE

Intro sur les types de modéles

1) Méthode de Monte-Carlo

2) Meéthode de plongement invariant (invariant embedding)
3) Méthode des eigenmatrices

4) Meéthode itérative

5) Me¢éthode harmonique sphérique




Classification of models .

Predictive (predict something we don’t know from somthing
we do know, e.g., radiance from IOP’S, etc.)
Vs.
| Dzagnostzc (analyze or transform known 1nformat10n, e.g.,
curve-fitting to data)

Direct (e.g., predict radiance given IOP’s)
vs. - |
Inverse (e.g., deduce IOP’s given the radiance)

Approximate analytical (e.g., single-scattering
approximation)
Vs. | -
"Exact" numerical (e.g., Hydrolight and Monte Carlo)

* Peterministic (no statistical noise, e.g., Hydrolight)
SVS. |
Probabilistic (statistical noise, e.g., Monte Carlo)

1) Méthode de Monte-Carlo

Méthode la plus générale pour résoudre la RTE quelles soient les fronticres, la radiance
incidente et les IOPs. Elle est basée sur la méthode de tracés de rayons dont I’hypothése

est : si ’on connait la probabilité d’existence de chaque événement séparé, on peut déterminer
la probabilité d’existence d’une série d’événements.




waler

Fig. 6.1. Tlustration of three photon trajectories and of the computation of E,.

L’explication pédagogique est la suivante. La modélisation Monte Carlo directe consiste a :

- simuler les directions des photons pour 1 soleil et ciel donné

- simuler I’interface air/mer

- suivi de tous les photons

- comptage des photons arrivant sur le récepteur (correction facteur cos8); évaluation de Ed(z)

Exemple trés simplifi¢ de détermination du chemin parcouru

A quoi est égale la distance r parcourue par un photon ? (la méme question peut €tre posée
non pour r mais | = cr appelé le chemin optique)

dL/dr=-cL r?17? rappel : ¢ = coefficient d’atténuation spectral

La diminution de la luminance L dans la direction & dépend de la probabilité du photon d’étre
absorbé¢ ou diffusé entre 1 et I+dl : p(1)
Une probabilité est telle que son intégration de 0 a « est égale a 1 et que

p(Ddl =e'dl

Soit R un nombre tiré au hasard entre 0 et 1 (distribution uniforme) :
R=1-p()=1-¢"

Soit 1=-In(1-R)

D’ou cr=-1In(1-R)
r=-1/cIn (1-R)

r correspond a la distance moyenne géométrique, appelé aussi libre parcours moyen (freem
mean path) <r<=<l/c>=<I>/<c>=1/<c>

une fois que la distance parcourue r a été calculée, la méme démarche est effectuée pour
déterminer quelle sorte d’interaction a lieu au bout de la distance.



Tir au sort de R entre 0 et 1 et comparaison avec I’albédo de diffusion simple w,=b/c
SiR >w, absorption (proportion a/c)

SiR <w, diffusion (proportion b/c)

On rappelle que ce terme w, est aussi appelé la probabilité de survie du photon)

Propriétés de Monte Carlo avant ( = les photons sont suivis dans le sens du temps croissant)
+ simulation analogue : ie analogue aux processus physiques

+ simple conceptuellement

+ instructive

+ trés générale

+ simple a programmer (ordinateur //)

- pas de lien simple avec la structure mathématique de la RTE

- peut étre tres inefficace en temps de calcul

Exemple en cours de calcul
En bas de la zone euphotique, 1 photon sur 10'° arrive dans le détecteur (rayon 1 cm)

En général pour avoir de bonnes estimations il faut que 1’erreur soit inférieur a I’erreur de
mesures (par exemple de 1’ordre de 2-5 % pour Ed)

L’erreur est liée au nombre de photons n détectés par le capteur erreur = n''?

Sin = 10 photons alors I’erreur est de 0,01 et déterminer Ed a 1% est satisfaisant.

Cependant, il vaut mieux rentabiliser tous les calculs en effectuant une simulation de Monte
Carlo arriére ou tous les photons sont utilisés car ils sont suivis dans 1’ordre du temps
décroissant, du capteur (= la source) vers la surface de I’eau (Gordon, 1985).

2) Méthode du plongement invariant
Méthode analytique (déterministe et non statistique) inventée par Ambarzumian (1943) dans
le domaine de I’astrophysique

Propriétés :

+ applicable a toute situation

+ pas de bruit statistique dans les résultats

+ mathématiquement ¢légante

+ efficace en temps de calcul

- mathématiquement trés complexe

Mobley et Preisendorfer ont travaillé pendant 2a ans sur la mise en place et modé¢lisation
numérique de la RTE ; voir les 6 volumes de Preisendorfer « Hydrologic Optics » (1976).

La technique est expliquée brievement pour le modele simplifié de la RTE , consistant en les
équations « Two-flow ». Elle consiste a transformer :
- un probléme linéaire (voir Table 7.1) a 2 équations , 2 inconnues Ed et Eu et 2
conditions limites : air et fond
- en un probléme non linéaire a 1 seule condition limite « facilement » résolu par
ordinateur
C’est la base du plongement invariant (démarche trés complexe).



Table 7.1. The two-flow irradiance equations and associated boundary
conditions. The underlined quantities are assumed known.

water equation
layer equations to be satisfied number
E(a) = E(w)uwa) + E a) r(a.w)
Sla,w] (7.1)
E(w) = E (w)r(wa) + E(a) {a.w)
(7.2)
dEd(Z) s
o 12) T4(2) + E(2) p(2) + Ey(2) (7.3)
Slw,m]
dE (2) S
T2 E(2)7,(z) + Ef2) pgy(2) + EQ(x)  (7.4)
(7.5)

S[m,b] E (m) = E(m) r(m.b)

3) Méthode des eigenmatrices (ou des ordinats discrets)
C’est une méthode analytique.

On approxime la fonction de phase de diffusion comme une série de polyndmes de Legendre.

This powerful solution method is based on approximating the
scattering phase function as a series of Legendre polynomials, truncated to a
finite number 2n of terms:

2n-1

Bap) = Y g, P lcosy). 9.1)
k=0

Here the g, are the expansion coefficients, and the P, are Legendre
polynomials. It will prove convenient [see Egs. (9.6) and (9.11)] to have an
even number of terms in Eq. (9.1), hence the upper limit of 2n-1 in the sum.
For the moment, we consider n to be an arbitrary integer; we shall discuss
below how to determine its value.




Legendre polynomials are treated in textbooks on mathematical
methods of physics, for example Boas (1983) or Mathews and Walker (1965).
They can be defined in general by

1 d*

Pk(x) = 2—

2 1Nk
et A

where x = cosy in the context of Eq. (9.1). The first few Legendre
polynomials are

Pyx) = 1 P(x) = %(sﬁ - 3x)
P(x) =x P(x) = %(35;:4 -30x2 +3) (9.2)
Px) = %(sz S Py = %(63):5 - 70x3 + 15%).

The P, form a complete set of orthogonal functions on the interval - 1
< x < 1. They satisfy the orthogonality relation

1
2
_flPk(x) P (x)dx = P— Oy » (9.3)

where 0§, is the Kronecker delta function of Eq. (1.19).

k.m

Pour plus de détails voir Stamnes (1988)

Propriétés :

+ trés efficace pour la RTE

+ L a toute profondeur, pour n’importe quelle direction §

- inefficace pour une fonction de phase de diffusion trés « pointue »
- inefficace si les IOPs varient avec z

- effets du vent a la surface ne sont pas bien rendus

Voir Mobley (1994) pour plus de détails sur ces 3 premiéres méthodes et les autres méthodes
de résolution de la RTE

D) Méthode inverse

I0Ps = - AOPs  Probléme direct
é

Probléme inverse

Le probléme inverse n’est pas encore résolu pourtant c’est un probléme d’intérét majeur car
c’est ce que I’on voudrait faire avec les données satellitales.

Lsat=Latm+tLw




Avec Lw = 2% de Lsat

Une fois L atm soutiré et les corrections atmosphériques effectuées
Si on connait ou que 1I’on peut modéliser Ed, alors on a Rrs = Lw/Ed
D’ou I’on veut dériver les composantes de 1’eau de mer.

Mais il existe des problémes spécifiques avec les méthodes inverses :
- unicité de la solution
- sensibilité aux erreurs (de petites erreurs en Lw peuvent aboutir a des [OPs
complétement fausses)

une méthode inverse simplifiée : la loi de Gershun

la RTE peut s’écrire :
mdL/dz=-cL+Le+L+L¢

Siil n’y a pas de diffusion inélastique ni de source interne, il reste :
pdL /dz=-cL+L¢
qui, intégrée sur toute la sphére, donne :

d/dz(Ed-Eu) = -cEo +bEo = -aEo
a =-1/Eo d/dz(Ed-Eu)

Avec relativement peu d’hypothéses, on peut obtenir une IOP le coefficient d’absorption en
fonction de Ed, EU et Eo.
Ces hypothése sont acceptables pour des milieux peu diffusifs.

E) Modélisation bio-optique (production primaire ..)

Behrenfeld, M., and P. Falkowski (1997).A consumer’s guide to phytoplankton primary
productivity models. Limnology and Oceanography 42 (7), 1479—-1491.

I. Wavelength-resolved models (WRMs)

00 Sunsel Lew
S pp o= f J j (A, 1, 2) X PAR(A, 1, 2) X a*(A, 2)

X Chl(z) dA dt dz — R
1I. Wavelength-integrated models (WIMs)

Sep=| J’ " @(t, 2) X PAR(, 2) X Chl(z) df dz — R
= sungise 0
II. Time-integrated models (TIMs)
Zau
> PP = f P*(z) X PAR(z) X DL X Chi(z) dz

=0

IV. Depth-integrated models (DIMs)

> PP = P, X f[PAR(0)] X DL x Chl X Z,,

opt



Systeme de classification

I. Wavelength-resolved models (WRMs)

N 00 sunscl Ze
gp}j} - [-4«: =sunelse J:-u (p(’\’ ’ Z) % PAR(A’ b Z) X a*{‘l’ Z) REIation
T @ = Photosynthése-lumiére

II. Wavelength-integrated models (WIMs)

_/-—--\ sunsel Fau
(> PP\= f j @1, 2) X PAR(1, 2) X Chl(z) dt dz
\\.____,/f 0

=sunrise Jz

II. Time-integrated models (TIMs)

- _‘\\‘ Loy
& o= f P*@ X PAR(z) X DL X Chi(z) dz y Mesure directe de la
IV. Depth-integrated models (DIMs) production primaire
3 %. = P, )< fIPAR(0)] X DL X Chl X Z, nette
N
. — P . X
o i - Etude des profils de 3PP en fonction de la
55 °T profondeur = Relation lumiere photosynthese
55 a4 4 . . .
£ £ ! PB : Noms de variables identiques
3 :_ 2 i
e N I I !
= — ; ' P2 —t ) . )
0 k  s00 1000 1500 2000 max opt o aopr

Intensité lumineuse (pE mes" )

Relation photosynthese-lumiere

Conclusion du papier
2/ Synthese

e Variabhilité de Y PP a été divisée en I'associant a chaque variable d’un
DIM standard Y PP=C,, X Z, X P X DLXF,

surf opt

I'> Amélioration des évaluations de 3 PP entre les catégories est négligeable
Si un paramétrage équivalent est fait pour la variabilité horizontale de > et

Ek* opt
. o . .
+ une dépendance linéaire de Eo n'est pas supposée

L}La variabilité de Eo est responsable d'une partie mineure de la variabilité de ¥ PP

EVOLUTION DES MODELES = AMELIORATION RESTREINTE DES ESTIMATIONS
DE § PP

Effort sur la compréhension des causes de variabilité des facteurs
physiologiques les + influents sur la variabilité de la productivité du
phytoplancton

Extraits de la présentation du papier Behrenfeld et Falkowski, 1997
par Marion Kersale en 2009 (merci Marion).



