A. PETRENKO MECANIQUE des FLUIDES (SNT4U21L) - Hydrocinématique

Chapitre 111 - HYDROCINEMATIQUE
L'hydrocinématique est 1'étude du mouvement d'un fluide en utilisant les notions de lignes de
courant, de trajectoires et de champ de vitesse. Il consiste en la description du mouvement des

particules en terme de déplacement, de vitesse et d'accélération (sans faire intervenir les forces).

1 Mouvement d'un fluide

Il existe deux méthodes principales pour mesurer la vitesse : la méthode lagrangienne et la méthode
eulérienne.

1.1) Mesures lagrangiennes de vitesse

Cette méthode consiste a suivre une particule de fluide le long de sa trajectoire.

Joseph Louis, comte de Lagrange (en italien Giuseppe Lodovico de Lagrangia), né a Turin en 1736
et mort a Paris en 1813 (a 77 ans), est un mathématicien, mécanicien et astronome.

Son nom figure partout en mathématiques. On lui doit un cas particulier du théoréme
auquel on donnera son nom en théorie des groupes, un autre sur les fractions continues,
I’équation différentielle de Lagrange. En physique, en précisant le principe de moindre
action, avec le calcul des variations, vers 1756, il invente la fonction de Lagrange, qui
vérifie les équations de Lagrange, puis développe la mécanique analytique, vers 1788. 11
¢labore le systeme métrique avec Lavoisier pendant la Révolution. Il est membre fondateur
du Bureau des longitudes (1795) avec, entre autres, Laplace et Jean-Dominique Cassini
(Cassini IV). Il participe a I'enseignement de mathématiques de I’Ecole normale et est aussi
le fondateur de 1I’Académie de Turin (1758). En mécanique des fluides, il introduisit le
concept de potentiel de vitesse en 1781, bien en avance sur son temps. Il démontra que le
potentiel de vitesse existe pour tout écoulement de fluide réel, pour lequel la résultante des
forces dérive d’un potentiel. Dans le méme mémoire de 1781, il introduisit, en plus, deux
notions fondamentales: le concept de la fonction de courant, pour un fluide incompressible,
et le calcul de la célérité d’une petite onde dans un canal peu profond. Rétrospectivement,
cet ouvrage marqua une étape décisive dans le développement de la mécanique des fluides
moderne.

A l'instant t, la particule est située en x,y et z.
Les variables de Lagrange sont :

X = 11(X0,Y o0, Zo,t)

Y= fZ(XanmZO:t)

7= 13(X0,Y0,Zo,t)

ou Xo,Yo, €t Z, correspondent aux coordonnées initiales de la particule fluide a un instant t..

Les positions successives de cette particule fluide au cours du temps décrivent une courbe
appelée trajectoire.
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Les vitesses et accélérations au point P sont :
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2. Description spatio-
temporelle de
I'écoulement (4)

Les trajectoires

Entre t-&t et t+5t

La méthode de Lagrange consiste a étudier chaque particule de fluide individuellement en suivant
son mouvement.

Les applications sont nombreuses dans les études atmosphériques ou océanographiques.

Ex flotteurs lagrangiens
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Exemple de flotteur Le flotteur est entrainé par la vitesse du courant a la profondeur de
de surface I'vancre » (chaussette de tissus de 10 metres de long).

Trajectoires de flotteurs lagrangiens

image AVHRR du 02/09/2010 0 02h20 image AVHRR du 04/09/2010 O 01h58
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Flotteurs lagrangiens durant LATEX (Lagrangian Transport Experiment ; Pis : A. Petrenko et F.
Diaz) en Septembre 2010 ; images AVHRR tous les 2 jours du 2 au 16 septembre. La trajectoire des
flotteurs est représentée pendant trois jours (AVHRR-1 en noir, AVHRR en magenta finissant par
un cercle magenta plus gros; AVHRR + 1 en noir finissant par une croix noire plus grosse)
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Fig ci-dessus - Toutes les trajectoires de flotteurs en Méditerranée et en Mer Noire disponibles
dans la database MedArgo (http://nettuno.ogs.trieste.it/sire/medargo/trajectories.php
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Fig b: Trajectoires entiéres des flotteurs actifs en ce jour (au-dessus)



http://nettuno.ogs.trieste.it/sire/medargo/trajectories.php
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Fig ¢ - Segments de trajectoire (le dernier mois) des flotteurs actifs en ce jour.

Vous pouvez aussi aller vérifier les trajectoires de flotteurs sur le site frangais Coriolis :
http://www.coriolis.eu.org/Data-Products/Data-Delivery/Mediterranean-Data-selection

1.2) Mesures eulériennes de vitesse
Cette méthode consiste a mesurer les courants en un point fixe dans I'espace. Elle est utilisée si on
veut connaitre les propriétés de 1'écoulement en certains points déterminés.

Leonhard Paul Euler, né en 1707 a Bale (Suisse) et mort a 76 ans en 1783 a Saint-Pétersbourg
(Empire russe), est un mathématicien et physicien suisse.

Euler fit d'importantes découvertes dans des domaines aussi variés que le calcul infinitésimal et la
théorie des graphes. Il introduisit également une grande partie de la terminologie et de la notation
des mathématiques modernes, en particulier pour l'analyse mathématique, comme pour la notion
d'une fonction mathématique. Il est également connu pour ses travaux en mécanique, en
dynamique des fluides, en optique et en astronomie.

En un point fixe M(x,y,z), la vitesse du fluide v (u,v,w) est mesurée.
Les variables d'Euler sont les suivantes :

u=g(x,y,z,t)

v=g,(X,y,Z,t)

w=g3(X,y,2,t)

Attention, a chaque instant, on mesure la vitesse de particule de fluide différentes.
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2. Description spatio- Comment reperer
temporelle du fluide (2) une « particule fluide »?

2 points de vue:

Lagrangien Eulérien
Temps
t+At <7 . Temps t
V(M,;t+At "
(M, ) V(M: t)
z
Q(M,:t +At) O(M: 1)
) ¥
X
Temps t ‘
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V(M,;t) 3 V(M t + At)
Q(M,:1) < y Q(M: t+At)
% ¥
Gauche CAMERA Droite : 2 INSTANTANES
Les applications consistent en des instruments en des lieux fixes :
ex courantomeétres fixés sur un mouillage de fond ; sur une plateforme.
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a) courantometre a rotor

b) courantomeétre acoustique a
effet doppler
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( ADCP) ﬁrgueur acoustique
c) ligne de mouillage (avec par

exemple des courantometres a &
rotor)
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Fig. 1. Locations of the PROLIG-2 moorings (@) and PROS-6 hydrological stations (O). The

dashed line represents the effective coastline. The inset shows the Western and Eastern Corsican

Currents (wee, ecc) flowing on both sides of Corsica and then around the Ligurian Sea as the
Northern Current {nc).

Extrait de :

C. Sammari, C. Millot, L. Prieur, « Aspects of the seasonal and mesoscale variabilities of the
Northern Current in the western Mediterranean Sea inferred from the PROLIG-2 and PROS-6
experiments Original », Deep Sea Research Part I: Oceanographic Research Papers, Volume 42,
Issue 6, June 1995, Pages 893-917

Exemples de séries temporelles de mesures de courants horizontaux

Note sur la figure 2 (ci-apres) - la graduation des 2 graphes supérieurs est de 10 cm/s, celle de A a
250 m est de 5 cm/s ; celle des 4 graphes inférieurs est de 7,5 cm/s. Les courants sont mesurés a
travers le Courant Nord Méditerranéen (Voir Figure 1).
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Fig. 2. Daily currents at the (a) upper, (b} intermediate and (¢} Jower levels of moorings A-D.
The sticks arc plotted in an order corresponding to their location from the coastline and with north
upwards.
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1.3) Accélération d'une particule de fluide

Une particule P est située en M, (x, y, z, )
autempsteten M,(x,y,z,t') autemps
t'=t+ 8t

Cette particule a pour vitesse
u=h,(x(1),y(t),z(t).1)

L'accélération selon x est égale a :

du _ d (hl(x(t),y(t>,2(t):t>)

dtdt

du_0h dx Ohdy Ohd: Oh dt
dt  ox dt 0y di 0zd ot di

du Oh, Oh, Oh, Oh,
—= u+ v+ w+
dt 0Ox oy 0z ot

du_ 0 ., 0 4 0 4 0y —(y O 4y 0 4y 040
Gt et et p sl g v g e S

c'est la méme chose selon y et z ; du coup l'accélération totale s'écrit :

Cii—I;:a—I;+ (7 grad ) V Ou dd—lt/zﬁ—lt/+ (T;V)T; (nabla =opérateur gradient)

Cette dérivée est la dérivée particulaire, appelée aussi dérivée lagrangienne ; c'est la dérivée en
suivant la particule dans son mouvement par rapport a un repere fixe.

A chaque instant on peut dessiner en chaque point de I'espace le vecteur vitesse correspondant, on
obtient le champ de vitesse a cet instant.

10
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Le premier terme du membre de droite est
l'accélération locale V(Ml,t ")— V(Ml,t)

Le deuxiéme terme est 1'accélération advective
VMt )~V (M, ')

V(a) NS =
V(4,0

La méme formule de dérivée particulaire est valable pour des grandeurs scalaires.
Par exemple, la dérivée particulaire de la température T est donnée par :
dT _o0T - ——
—=—+(V.grad )T
i otV -grad)
1.4) Lignes de courant

Une ligne de courant est une ligne tangente en chacun de ses points au vecteur vitesse du point & un

instant t.
g v,
V,(t)
y /

A linstant t j
Vi(t)

2. Description spatio- Vit
temporelle de .1_(_,2 il Vi(t)
I'écoulement (5)

Les lignes de courant

A l'instant t

Note : la ligne de courant ne correspond pas forcément au trajet d'une particule de fluide. Elle lie
différentes particules dont elle est tangente aux vitesses.

* Les lignes de courant changent de t a t'

* Sil'écoulement est permanent, ces lignes ne varient pas et coincident avec les trajectoires

11
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* les lignes de courant satisfont aux équations différentielles :
dx_dv_dz
u v.ow

* un volume de fluide limité par des lignes de courant qui s'appuyent sur une courbe fermée
est un tube de courant (voir figure ci-dessous)

2) Equation de continuité

Une équation fondamentale en mécanique des fluides est le principe de la conservation de la masse.
Elle indique que, au cours d'un écoulement conservatif, la masse se conserve.

2.1) Equation

Soit le parallélépipede centré en M de volume
dV=dx dy dz

Au temps t, la masse contenue dans ce volume
est:
Mt= p,dxdydz

La masse au temps t' =t + dt est :

Mt' = P, 4 dxdydz

la variation de masse pendant dt est :

Mt'— Mt = (p(t+ dt)_p(t)) dx dy dz

Mt' — Mt = %dxdydzdt

Mais il faut aussi prendre en compte le flux entrant (sortant) de masse dans le volume.
En se concentrant d'abord aux échanges selon l'axe x :

12
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'.olx _ -

e AN D
. - @ u“ - fd-x
H +0

—
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2

la masse algébriciue entrant par la face 1 pendant dt e.st :
M, =(pu) dydzdt unite kg*m-3*m™*s-1*m2*s = kg
la masse algébrique sortant par la face 2 pendant dt est :
Mo =(pu), 4 dy dz dt

Pendant dt, 1' « excés de masse sortante » (algébrique) est :

(My=M ) =((pue), w=(pue) ) dy dz dt
(MZ—MI)XZ%dxdydzdt
x

C'est la méme chose selon y et z; donc l'excés de masse total est :

M2—M1:( 6(6pxu)+ a(apyv)+ a(apzw))dx dy dz dt

M2—M1:divergence(p;)dxdydzdtzv.(p T;)dxdydzdt

La variation de la masse prend en compte les deux termes précédents: Mt'— Mt et M, -M; ce qui
donne le résultat global de :

variation de masse =(%+ v .p _I;) dxdy dz dt

Dans un écoulement conservatif (sans source ni puits), I'équation de conservation de la masse est :

o, v.(pV):O

Notes : * On peut aussi 1'écrire avec les formules précédentes :
a_p + (M 2_M 1) —
ot dxdydzdt

si (M,—M,)>0 lexcés de flux est sortant donc on a forcemment 9 p< 0

13
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* exercice : démontrez que v(p?):pv(f}ﬁ(f/’v)p

* Si il existe une source ou un puits dans 1'écoulement et que celui-ci n'est plus conservatif, alors
'équation devient :

0P, T (.=
ot V.(pV)=pq,
avec ¢, débit de masse par unité de volume (cas d'une source si ¢, est positif, d'un puits si

q, estnégatif).

Quelle est 'unité de gs ? 1* terme a gauche kg.m-3.s-1 ; 2e terme a gauche m-1.kg.m-3.m.s-
1=kg.m-3.s-1 ; donc a droite : gs est en s-1

2.2) Autre écriture et cas particuliers

L'équation de conservation de la masse peut aussi s'écrire :
p. o[ =
—+ V.(pV)=0
5t Ve?)

ap, 0lpu) olpv) alpw)_
ot 0Ox oy 0z

ap, ou, 0p, v, 3p, dw. dp_
o P e Py ey P e )

en changeant l'ordre des termes :
ap, 00, p, B9, du, v, dw
(6t+uax+v8y+waz>+(p 05, PG, )=0

ox 0y 0Oz
(%—?+(7.V)p)+pv.720

L'équation de conservation de la masse peut aussi s'écrire :

Dp & =
L4 pV.7=0
Dr pV

Attention a ne pas mélanger les deux écritures !!!
cas particuliers :

*  Pour un écoulement conservatif permanent, alors 1'équation devient :

- dp
ApV)=0 car —=
V.(pV) Py
*  Pour un écoulement conservatif d'un fluide incompressible, I'équation devient :
V=0 —=0
\Y% car —-

La divergence de la vitesse est nulle.

14
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Supplément : Théoréme de flux-divergence, appelé aussi Théoréme de Gauss-Ostrogradski (ou
Ostrogradsky) ce théoréme affirme 1'égalité entre l'intégrale de la divergence d'un champ vectoriel
sur un volume dans R’ et le flux de ce champ 4 travers la frontiére du volume (qui est une
intégrale de surface).

Note historique

Le théoreéme a été découvert pour la premiere fois par Lagrange en 1762, puis redécouvert de fagon
indépendante par Gauss en 1813, puis par Siméon-Denis Poisson en 1824 et par Ostrogradski, qui a
¢galement donné la premicre preuve du théoréme général, en 1826. 1l a été encore découvert par
Green en 1828, et indépendamment par Frédéric Sarrus toujours en 1828.

Note : Gauss (allemand 1777-1855) — Thm li¢ a I'électromagnétisme

Ostrogradski (russe-ukrainien 1801-1862)

Green (GB 1793-1841) a publi¢ un THM proche dans son Essai sur l'application de I'analyse
mathématique aux théories de 1'¢électricité et du magnétisme paru en 1828.

J,Jow v = 5@ n)ds

Muﬁ@um

R a.aa;)

(3 ermhm>

V.7 estla composante de la vitesse qui est orthogonale a la surface du volume
Selon son signe, la divergence exprime la dispersion ou la concentration d’une grandeur (telle une
masse par exemple) et le théoreme précédent indique qu’une dispersion au sein d’un volume
s’accompagne nécessairement d’un flux total équivalent sortant de sa fronti¢re (ou au contraire,
concentration implique flux entrant).

Le débit total Q traversant une surface a pour définition :

f{ (7.7) oIS -

unité ? m.s-1.m2=m3.s-1

15
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* Si le fluide est incompressible, 1'équation de continuité d'un écoulement conservatif se réduit a :

—_— —

V.ry=0

Le théoreme de Gauss-Ostrogradski nous indique donc que :

f[ouu Vdo Q@(V )ols =0

Le débit total a travers toute surface fermée S est nul.

Exemple : Etude de I'écoulement d'un fluide incompressible dans un tuyau de section variable

P 7 Pt Pl

7w U
. >
7

Si I'on considére un volume enclos dans une surface fermée S ( §=5§,US§,US,,. ), alors:

16



A. PETRENKO MECANIQUE des FLUIDES (SNT4U21L) - Hydrocinématique

£Cv ds -0 (S=-s;oszu3w>
j{@ %) ds 4 ff(m)ozs +ﬂ(v'a)45 0

W
.-—.=O

~UpSq + O = uﬁsi -0

En débit, cela peut s'écrire :
Bicted = Q[J (9. w)ds = 0
= Qi +Qg =0  owee Qu= UyS,
Qo= Us Sy

- [0:-6.]

3) Fonction de courant

Pour un écoulement plan (i.e., bidimensionnel, par exemple dans le plan xy), avec 1'hypothése que
le fluide est incompressible, I'équation de continuité se réduit :

A 8u ov
V= =0
V. ax 6y
il existe une fonction Y=vy(x, y) telle que :
oy -0y
=— t =
u 3y et v 5x

y=y(x, y) estappelée fonction de courant.

17
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—_

Note : On sait que pour tout vecteur 4 ,ona:
divergence du rotationnel de A=V. (rot Z) =V.(V* 2)= 0
Comme v V=0 , on pose le vecteur 1_f’:(O,O, y)
et V=rotW= v * P
Vérifiez que vous obtenez les formules de la fonction de courant données ci-dessus.

Propriétés des fonctions de courant :

ste

* leslignes y=C"" -coincident avec les lignes de courant

rappel les lignes de courant sont telles que : i—x:% donc —vdx+udy=0

En remplacant u et v dans cette formule par I'expression en fonction de 1 , on obtient :
—vdx+u dyZ—(—a—w)dx+(a—w)dy:(a—w)dx+(a—w)dy:dw =0
Ox 0y ox o0y

* e long d'une ligne de courant y=C""

A &aﬁm do cocorauk

{1 P U P
_d_,wﬂ"-}' LP: {Hq = C_SE—
et >
e

18
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Soit Q le débit entre ces deux lignes de courant

exS = AB*l l'exercice est effectué sur une epalsseur unltalre (dz—l)

Q- [Cv ﬁ)a!s j(v’ "’)ag,x:z
Q: V*Ma% /7" 9‘7”0[;

hcwwsmz ) %= cs"* —%A‘P 3‘*’4{

-ug

OW= 1P2 — \Pl — Q Débit (ou flux) entre les deux lignes de courant unité m?/s

En océanographie, le Sverdrup, nommé en I'honneur du pionnier océanographique Harald Sverdrup
(Norvege 1888-1955), est une unité de mesure du transport de volume, utilisée pour mesurer les
débits des courants océaniques. Il est équivalent a 10° m?/s.

Exemples

Le Gulf Stream transporte environ 30 Sv le long des cotes de Floride, et atteint 100 Sv vers 60°W,
alors que les courants passant le détroit de Behring ou le détroit de Gibraltar ne sont que de 1 Sv. Le
courant circumpolaire antarctique transporte en moyenne 130 Sv lorsqu'il traverse le passage de
Drake au sud de la Terre de Feu (Jean-Frangois Minster, La machine-océan, 1997).

19
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EXO : Le Courant Nord a un flux de 1 Sv en moyenne. En été, si on considére que ce courant fait
30km de large, 100 m de profondeur, quelle est sa vitesse moyenne ?

4) Ecoulement irrotationnel

La description spatio-temporelle d'un écoulement plan est :

&y
op \
I’ —,. 3y. &8t
d.. 515t
; ”7 e ¥
3 SaL %
0, d.oya \,
Rotation
Déformation

| 2. Description spatio-
T temporelle de
i I’écoulement (3)

d.8y. 8 \’Dilatation

a.ox.8t

oy
@, Jy. 8t J
m;
V
’ X
i

A l'instant t+5t

A l'instant t

4.1) Rotation

Le cas simplifi¢ d'un écoulement bidimensionnel dans le plan xy est traité.
On isole un ¢élément fluide de section dx dy, qui subit une rotation pendant un temps dt.

Le taux de rotation de cet ¢lément fluide, dvdy, autour d'un axe passant par z, en considérant comme
positif le sens des aiguilles d'une montre, peut étre exprimé en fonction des vitesses, u et v, et en
ou ov

aya’yet—a’x

fonction des variations des vitesses 5
X

20
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(v+ ? dx—v)dt p
. . X __V
La rotation de la face dx est : i =35
—(u+ g—udy—u)dt 5
La rotation de la face dy est : dfz p :_£

Le taux net de rotation € de cet élément fluide, drdy, autour de I'axe z représente la moyenne de
rotation des faces dx et dy ; on le définit alors ainsi :

_L/0v_Jdu
QZ_Z(ax 6y)

Si I'écoulement est 3D, le méme raisonnement peut étre fait pour chaque face du parallelepipede
(dxdydz) :
1, ow Ov 1, 0u ow
= (———— Q = (———_
=3l o 253055

Le vecteur Q est appelé vecteur rotation.

21
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Le vecteur tourbillon, lui, est défini comme le rotationnel du champ de vitesse du fluide V X V.

: = L o . = 1 oo
Le vecteur rotation Q est égal a la moitié du vecteur tourbillon Q= 5 (VxTV)

4.12) Ecoulement irrotationnel

-

C=2_los . , : :
*Si Q= 5 (VXV7)=0 en tout point, 'écoulement est irrotationnel.

* Si I'écoulement est plan (dans le plan xy), alors w=0 et ai:o
z
l,0w Ov
= (———1]=0
* 2(8y az)
_LOu_0ow,\_
y_2(6z 6x)_0
1,0v Ou
Q=—(———
: Z(Gx 8y)

Pour que 1'écoulement soit irrotationnel, il faut et il suffit que cette troisiéme composante soit aussi

nulle.

. ov_20 . : :
Un écoulement plan tel que a_V: 6_u en tout point est irrotationnel.
X oy

5) Potentiel de vitesses

Dans un écoulement irrotationnel, il existe une fonction ( , appelée potentiel des vitesses telle

que V:gradmzv@

_o¢ ~ _0¢ _0Q
“ox ' "Toay P VT oz

Soit: u
Exercice : vérifiez que quelque soit le scalaire g, on a toujours

rot(grad q)=V X grad ¢=0
d' ou l'introduction du potentiel de vitesse pour un écoulement irrotationnel.

Remarques :
¢ Ondit que V dérive dupotentiel
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* On parle d'écoulement « potentiel » ou « a potentiel de vitesses »
* les surfaces ou lignes équipotentielles sont telles que (p est constante

¢(x,»,2)=C" o @(x,y)=C"

* Sile fluide est incompressible et 1'écoulement conservatif (donc V V=0 )etsi V
derlve du potentlel (p (tel que V grad Pp= V @ ), alors
V.grad 9=V .V 9=A ¢=0

Un écoulement irrotationnel d'un fluide incompressible est tel que (P satisfait 1'équation
de Laplace ; 1.e. La fonction (@ est harmonique.

Exercice Ecrire la formule en x, y et z du Laplacien
6) Ecoulement potentiels plans

6.1 réseau des lignes 1 et @

Pour un écoulement plan en (xy), incompressible et irrotationnel, le potentiel des vitesses (p etla
fonction de courant 1) existent et sont liés par :

T/»Zgradcp:v>cp donc u:% ; v:g—jj
1]) lignes de courant donc U :@_1]) V= _5_11) venant de _V> X f/: :6
oy 0Xx

op_0y  09__ 0y
ox Oy oy ox

satisfaites par tout écoulement plan en (xy) et irrotationnel d’un fluide incompressible

sont les conditions de Cauchy-Riemann qui doivent étre

Propriétés :
* La condition d'irrotationnalité dans le plan (xy) donne :

ov_Ou_
ox Oy
9, 9,
Comme u:—w ; v=——w

oy ox

on peut écrire cette condition d'irrotationnalité sous la forme :
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L) (S0

Ox Ox' Oy Oy
2 2

_6_112)_6 ll;:() soit Ay=0 1 est aussi harmonique
ox~ Oy

* Nous avons :

17 N4 . T ) ste
V=grad ¢= V @  soitlesvecteurs V etleslignes @=C  sont orthogonaux
et
—_ ) ¢
les vecteurs }J sont tangents aux lignes de courant Py= C™
donc :

. L, . . __ iSte . __ 1Ste
Les lignes équipotentielles (= C™ etles lignes de courant Py= C™ sont orthogonales et
forment un réseau orthogonal.

. . . . — t . — {
Si une ligne équipotentielle = c™ coupe une ligne de courant P = Cc™ , elles se coupent
orthogonalement. Ces lignes forment un réseau orthogonal.

Note : les frontiéres — solides ou surfaces libres — représentent des lignes de courant (car il n'y a pas
d'écoulement au travers).

6.2 exemples d'écoulements

Toujours dans le plan (xy), pour un fluide incompressible et un écoulement irrotationnel

1) Ecoulement rectiligne uniforme
t
u=U=C" et v=0
Déterminer (et

les cauditions de Cauchy-Riemann (CR) donnent :
(200 00, _d0_ 0w
ox 0y oy ox

du coup, commengons par calculer

MZ%ZU donc @=Ux+ f(y)

24



A. PETRENKO MECANIQUE des FLUIDES (SNT4U21L) - Hydrocinématique

—g cﬁ =/f"(»)
0
or V:a—(p:() donc f '(y):() soit f(y): c™
Y
etlona =Ux+ c™

. op__ 0y

La méme démarche est a appliquer pour trouver ) = =— =0

oy 0x
de la deuxiéme condition de CR, on a :
0
——wZO donc lp:CSte+ g(y)
0 Xx

og(y)
dy

or la premiére condition de CR donne :
0
—w: donc Y=Uy+ Cc™
dy

En résumé, on a Y=Uy+ B e¢ @=Ux+ A avecA etB deux constantes données

I:?I - lignes de courant _— _I‘='DHI - equ ipotentielles o
D E G D | o

Les lignes de courant 1 sont des droites horizontales dans le sens du courant U ; les lignes
équipotentielles (P sont des droites verticales. On vérifie que les lignes équipotentielles et les

lignes de courant forment bien un réseau orthogonal.
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Tableau CN.1 Réseau des lignes @ et ¥

Ecoulement rectiligne uniforme

O=+U_x
¥Y=+U,»

avec: U_ = Cte

y y

®=+C Inr
Y=+C 6
e B = s
avec: C= o =V, r=C:
y
®=-C Inr
¥Y=-C#o

avec: C= 4 =V B O

b = -K06

Y = +Klnr

K V = C
avec =-Vyr= oy = C

(Remerciement pour ce tableau de Graf et Altinakar)
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2) Ecoulement radial autour d'une source ou d'un puits

Sur les figures 2 et 3 du Tableau CN-1, on observe une symétrie par rapport a 1'axe z donc cet
exercice est plus facile a résoudre en coordonnées polaires (r, 0 )

Les composantes de la vitesse V sont données, en coordonnées cartésiennes, par :
u= Vr cos0 V' estla vitesse radiale

7

v=VF, sin 0 avec = V. ( 27 I’) le débit unitaire

Si Q est positif, il s'agit dune source ; si Q est négatif, il s'agit d'un puits

A La vitesse de I'écoulement peut donc s'écrire en
—J) coordonnées polaires ainsi :

7 T Uy
2nr

? e r=—2 o 1,20

Les conditions de CR est coordonnées polaires s'écrivent :

_09_10v _109__ow
Vr_(?r_r 06 ° Ve_rﬁe_ or

Comme précédemment, pour chaque fonction, il faut intégrer par rapport a une com osante, €x T.
2 5 2
puis par rapport a l'autre COl’IlpOSEIIltC, €X

o 0 0
—= == ==]
or & 2nr done 2m n(r)+ f(6)
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oy_ 0 _ 0
=00 20y donc m—zn et W—2n6+g(1”)

or Vez—a—w:():—g'(l”) donc g(V):CSte:CZ

Enposant (C=—=- | on obtient les fonctions:
T

e=Cln(r)+C, et Y=C0+C,
Les lignes de courant 1)) sont des % droites issues du point d'origine du repére (0,0) ; les lignes
équipotentielles (p sont des cercles concentriques autour de (0,0). On vérifie que les lignes
équipotentielles et les lignes de courant forment bien un réseau orthogonal.

Exercice : trouvez les fonctions (et 1) en utilisant les coordonnées cartésiennes x et y.

3) Ecoulement « tourbillon »

C'est le cas « inverse » de I'écoulement autour d'une source ou d'un puits :
¢=CO0+C, «« y=Cln(r)+C,

avece

_09_ _109_C
V},—ar—o et Ve—rae—r

Les lignes de courant 1 sont des cercles concentriques autour de (0,0) ; les lignes
équipotentielles (p sont des ' droites issues du point d'origine du repére (0,0).

4) Ecoulement avec un point d'arrét

A
Les lignes équipotentielles = E (x = yz) sont des hyperboles orthogonales aux lignes de

courant :
Y= Axy qui sont des hyperboles équilatéres.

Les composantes de vitesse en un point sont:

u—@:Ax et V=—"=—Ay

COx o0y
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Différents choix de fronti¢res (qui sont des lignes de courant particuliéres) sont possibles amenant a
des écoulements pouvant étre définis comme :

i) Ecoulement dans un coin

ii) Ecoulement contre une paroi (jet orthogonl a la paroi)
iii) Ecoulement dans une conduite a section variable

iv) Ecoulement dans un embranchement de conduite (avec une 1égére déformation des lignes de

courant pres de 1'embranchement).

(voir Figures suivantes)

écoulement

dans un coin

s

/ /7 X
1 i \
#, FTy //I’I p by W\

s # . P g s Ay F oty R
Ol AV RN A
ey // P ////\// ; \\ SN
2K 420X RS
- - X R~
- N v - N LT e
- * - =

X TTTTIT7T77 777

.
.
-
-
-
=
~%
écoulement dans

une conduite a

section variable

écoulement contre

une paroi (jet)

écoulement dans
un embranchement

de conduite

(Remerciement pour ces figures de Graf et Altinakar)

5) Ecoulement entre deux parois faisant un angle O
Les fonctions sont définies en coordonnées polaires par :
cpzﬁr”cos(n 0)
n
wzgr"sin(ne)

B est une constante ainsi que n qui est li¢ a 'angle O entre les deux parois avec la fonction
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suivante : OLN=7TT soitl'angle OA=—
n
Différents cas sont possibles suivant I'angle et sont montrés dans la figure suivante.

. _TT . Lo .
Dans le cas d'un angle droit OL=-_ , soit n=2, nous pouvons vérifier que nous ré-obtenons le cas
de I'écoulement dans un coin obtenu dans la section précédente :

cpzﬁrzcos (26)=£r2(00526—sin26)=§(xz—yz)

wzﬁrzsin(%)):gr22sin800s9:Bxy

i
i
i
I

1
!
|
|
1

(Remerciement pour ces figures de Graf et Altinakar ; attention dans ces figures I'angle Ol est noté 0 )

Exercice : notez les différences des fonctions (entre cette section 5 et la section précédente) dans le
cas de 1'écoulement le long d'une paroi plane ; et la différence au niveau aussi de I'écoulement dans

le plan « entier ».

6) Ecoulements superposés
Rappel : Les fonctions @ et 1 , si elles existent, doivent satisfaire I'équation de Laplace, qui

est de forme linéaire :
Ap=0 e AY=0

Donc la somme de plusieurs fonctions @, + @, etlou P+ Y, satisfait également a
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1'équation de Laplace, pour autant que chacune des fonctions séparées satisfasse a 1'équation de
Laplace.

La somme de deux écoulements plans, incompressibles et irrotationnels est un écoulement plan,
incompressible et irrotationnel.

A partir de deux (ou plusieurs) réseaux d'écoulements plans simples on obtient un autre réseau
d'écoulement plan superposé.

Exemple d'une source dans un écoulement uniforme

Soit un écoulement parall¢le a I'axe x, avec une vitesse U w Ou
¢, =U,x e P,=U_,y
et un écoulement radial d'une source avec un débit unitaire, ou:

@ZZ%In(x2+ y°) wzzzgarctan(%)

Uss '
= 4

i——-—.n

T
:

Objectifs :

a) calculez les fonctions (P et 1) associées a cet écoulement superposé
b) calculez la vitesse en tout point

¢) calculez les coordonnées d'un point d'arrét A ou la vitesse est toujours nulle

a) La superposition de ces deux écoulements donne:
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o=@+ @,=U_ x+ %ln(x% yz)
T

Y=+ 1p2:Uooy+ 2arctan(l)
21 X

Les lignes de courant sont tracées ; on peut observer qu' elles se divisent en deux régions. Les lignes
provenant de la source restent a 'intérieur de la courbe BAB'. Les lignes issues de I'écoulement
uniforme se répartissent a I'extérieur de cette courbe BAB'. (Figure a).

U
4
» > -
LY T T -0
-7 P PR T
- == -
B A L e
- - ,/'z -
—_— Fe W Tl i .-
o s L7
- & T -
e
o A1 1N 4
-----"A)
PR ___-.___(?..q_i_..—-—.___.——. X
e TR fiy
.‘\\\ \\ \\\ .
g ~ N
= - \\\\ Pong \‘.,
~ < -
—_— ~ i ~ . -
S ® N i
i N VTeRs S s
T
~ ~ ~ TS
- - -~ 1
ta "\ 1 ‘h!-‘OB
—_—

(Remerciement pour ces figures de Graf et Altinakar)

Cela forme ce qui est appelé 1/2 corps de Rankine (ingénieur et physicien écossais 1820-1872).
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Exemple de dessin évaluant simplement l'allure des lignes de courant. Cas particulier avec

0 Y

U.,=1 pour dessiner P, et 2— arctan (— ) =1 pour dessiner la « premiére » ligne
TT X

de courant de la source 1,

b) les composantes de la vitesse en tout point sont données par :

Q( X
2m x2+ y2
Q( y )ZQQ( y

21t x2+y2 27t x2+y2

u=u+u,=U_+ et

v=v,+v,=0+

c) Les coordonnées du point d'arrét A sont telles que U =V ;= 0

— Q A —
U =U + Y4 \—p
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Q
2n U,

_0 V4 —0

V,=
2 2
2m X+ Y,y

donc yAZO et X, =—

Le point d'arrét est situé sur I'axe de symétrie (y=0). On remarque que :
*  plus I'écoulement uniforme est fort ( U/, augmente), plus le point d'arrét se rapproche de

l'origine (la valeur absolue de X , baisse) ;

* plus la source est forte ( Q augmente), plus le point d'arrét s'é¢loigne de I'origine (la valeur
absolue de X, augmente).

On peut remplacer chaque ligne de courant par un contour solide. En effet, si I'on suppose solidifié
tout le fluide a I'intérieur de cette ligne de courant, I'écoulement a l'extérieur n'est pas modifié. On
remplace alors la courbe BAB' par une fronticre solide, les lignes de courant représentant donc un
écoulement autour d'un solide (demi-corps) placé axi-symétriquement dans un écoulement uniforme
(voir Fig. b).

A une grande distance (x tendant vers l'infini #=U _ ), la largeur, D, de ce demi-corps est

0

atteinte, laissant passer tout le débit unitaire ( Q =Dx1*U_ ) onadonc: D=— |,

U,

Supplément le cas d'un doublet (et doublet dans un
¢coulement uniforme) peut étre étudié et mis en relation
avec les formules des bipoles électriques.

Un doublet est la superposition de deux écoulements
radiaux, une source et un puits.

Sur la figure de gauche, les deux sont mis avec leur origine
sur l'axe x.

S O -

Fig. CN.13
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Annexe : Exemple de fonction de courant (figure 2 ci-dessous) calculée avec Ariane
(http://www.univ-brest.fr/lpo/ariane; Blanke and Raynaud [1997]; Blanke et al. [1999])

Rousselet, L., Doglioli, A.M., Maes, C., Blanke, B., Petrenko, A.A. (2016). Impacts of
mesoscale activity on the water masses and circulation in the Coral Sea. J. Geophys. Res.
Oceans, 121, 7277-7289, doi:10.1002/2016JC011861

(L. Rousselet, en M2 OPB en 2014/15, a débuté sa thése sous la direction d'A. Petrenko et A.
Doglioli en octobre 2015)

8°s

12°s

16°S

20°S

24°s

144°E 150°E 156°E 162°E 168°E 174°E

Figure 1 : Annual average of the AVISO velocity field in the Coral Sea (arrows). Route of the
Bifurcation cruise (brown). Positions of CTD stations (blue and red). Trajectory and positions of
Argo profiles (orange line and diamonds). The approximate position of anticyclonic eddy A is
shown with bold blue arrows. The geographical limits of the Lagrangian integrations made with
Ariane are drawn in green.

NVIJ : North Vanuatu Jet ; NCJ : North Caledonian Jet.
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Lagrangian results (Ariane, model)

ey T

40%
[P

S
L
|

Figure 2 : Black lines : stream function (fonction de courant) showing the full surface circulation
that connects the NVJ and SLI sections. A fraction of this connection is achieved by eddies (not

shown), and the diamonds show the contribution of anticyclonic eddies to this fraction (colorbar in
%).

A Lagrangian analysis using the daily surface velocity from the NLOM model (1/32°) highlights
the transfer of particles from the NVJ to the NCJ through eddy circulation (3 % of the flow
crossing the SLI section). The contribution of anticyclonic eddies to this eddy-induced leakage can
reach up to 70-90 %.
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