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Chapitre III - HYDROCINEMATIQUE

L'hydrocinématique est l'étude du mouvement d'un fluide en utilisant les notions de lignes de 
courant, de trajectoires et de champ de vitesse. Il consiste en la description du mouvement des 
particules en terme de déplacement, de vitesse et d'accélération (sans faire intervenir les forces).

1 Mouvement d'un fluide

Il existe deux méthodes principales pour mesurer la vitesse : la méthode lagrangienne et la méthode 
eulérienne.

1.1) Mesures lagrangiennes de vitesse

Cette méthode consiste à suivre une particule de fluide le long de sa trajectoire.

Joseph Louis, comte de Lagrange (en italien Giuseppe Lodovico de Lagrangia), né à Turin en 1736
et mort à Paris en 1813 (à 77 ans), est un mathématicien, mécanicien et astronome.

Son nom figure partout en mathématiques. On lui doit un cas particulier du théorème 
auquel on donnera son nom en théorie des groupes, un autre sur les fractions continues, 
l’équation différentielle de Lagrange. En physique, en précisant le principe de moindre 
action, avec le calcul des variations, vers 1756, il invente la fonction de Lagrange, qui 
vérifie les équations de Lagrange, puis développe la mécanique analytique, vers 1788. Il 
élabore le système métrique avec Lavoisier pendant la Révolution. Il est membre fondateur 
du Bureau des longitudes (1795) avec, entre autres, Laplace et Jean-Dominique Cassini 
(Cassini IV). Il participe à l'enseignement de mathématiques de l’École normale et est aussi
le fondateur de l’Académie de Turin (1758). En mécanique des fluides, il introduisit le 
concept de potentiel de vitesse en 1781, bien en avance sur son temps. Il démontra que le 
potentiel de vitesse existe pour tout écoulement de fluide réel, pour lequel la résultante des 
forces dérive d’un potentiel. Dans le même mémoire de 1781, il introduisit, en plus, deux 
notions fondamentales: le concept de la fonction de courant, pour un fluide incompressible,
et le calcul de la célérité d’une petite onde dans un canal peu profond. Rétrospectivement, 
cet ouvrage marqua une étape décisive dans le développement de la mécanique des fluides 
moderne.

A l'instant t, la particule est située en x,y et z.
Les variables de Lagrange sont :

x = f1(xo,yo,zo,t)
y = f2(xo,yo,zo,t)
z= f3(xo,yo,zo,t)

ou xo,yo, et zo correspondent aux coordonnées initiales de la particule fluide à un instant to.

Les positions successives de cette particule fluide au cours du temps décrivent une courbe 
appelée trajectoire.
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Les vitesses et accélérations au point P sont :

 u=∂ x
∂ t

;v=∂ y
∂ t

; w=∂ z
∂ t

a x=
∂2 x
∂2 t

;a y=
∂2 y
∂2t

;a z=
∂2 z
∂2 t

La méthode de Lagrange consiste à étudier chaque particule de fluide individuellement en suivant 
son mouvement.
Les applications sont nombreuses dans les études atmosphériques ou océanographiques.
Ex flotteurs lagrangiens
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Exemple de flotteur 
de surface

Le flotteur est entrainé par la vitesse du courant à la profondeur de 
l'»ancre » (chaussette de tissus de 10 mètres de long).

Trajectoires de flotteurs lagrangiens
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Flotteurs lagrangiens durant LATEX (Lagrangian Transport Experiment ; Pis : A. Petrenko et F. 
Diaz) en Septembre 2010 ; images AVHRR tous les 2 jours du 2 au 16 septembre. La trajectoire des 
flotteurs est représentée pendant trois jours (AVHRR-1 en noir, AVHRR en magenta  finissant par 
un cercle magenta plus gros; AVHRR + 1 en noir finissant par une croix noire plus grosse)
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 Fig ci-dessus - Toutes les trajectoires de flotteurs en Méditerranée et en Mer Noire disponibles 
dans la database MedArgo (http://nettuno.ogs.trieste.it/sire/medargo/trajectories.php)

Fig b: Trajectoires entières des flotteurs actifs en ce jour (au-dessus)
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Fig c - Segments de trajectoire (le dernier mois) des flotteurs actifs en ce jour. 

Vous pouvez aussi aller vérifier les trajectoires de flotteurs sur le site français Coriolis :
http://www.coriolis.eu.org/Data-Products/Data-Delivery/Mediterranean-Data-selection

1.2) Mesures eulériennes de vitesse
Cette méthode consiste à mesurer les courants en un point fixe dans l'espace.  Elle est utilisée si on 
veut connaître les propriétés de l'écoulement en certains points déterminés.

Leonhard Paul Euler, né en 1707 à Bâle (Suisse) et mort à 76 ans en 1783 à Saint-Pétersbourg 
(Empire russe), est un mathématicien et physicien suisse.

Euler fit d'importantes découvertes dans des domaines aussi variés que le calcul infinitésimal et la 
théorie des graphes. Il introduisit également une grande partie de la terminologie et de la notation 
des mathématiques modernes, en particulier pour l'analyse mathématique, comme pour la notion 
d'une fonction mathématique. Il est également connu pour ses travaux en mécanique, en 
dynamique des fluides, en optique et en astronomie.

En un point fixe M(x,y,z), la vitesse du fluide V⃗ (u , v ,w) est mesurée.
Les variables d'Euler sont les suivantes :
u=g1(x,y,z,t)
v=g2(x,y,z,t)
w=g3(x,y,z,t)

Attention, à chaque instant, on mesure la vitesse de particule de fluide différentes.
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Gauche CAMERA Droite : 2 INSTANTANES

Les applications consistent en des instruments en des lieux fixes :
ex courantomètres fixés sur un mouillage de fond ; sur une plateforme.

a) courantomètre à rotor

b) courantomètre acoustique à 
effet doppler 
(ADCP)

c) ligne de mouillage (avec par 
exemple des courantomètres à 
rotor)
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Extrait de :
C. Sammari, C. Millot, L. Prieur,  « Aspects of the seasonal and mesoscale variabilities of the 
Northern Current in the western Mediterranean Sea inferred from the PROLIG-2 and PROS-6 
experiments Original », Deep Sea Research Part I: Oceanographic Research Papers, Volume 42, 
Issue 6, June 1995, Pages 893-917
Exemples de séries temporelles de mesures de courants horizontaux

Note sur la figure 2 (ci-après) -  la graduation des 2 graphes supérieurs est de 10 cm/s, celle de A à 
250 m est de 5 cm/s ; celle des 4 graphes inférieurs est de 7,5 cm/s. Les courants sont mesurés à 
travers le Courant Nord Méditerranéen (Voir Figure 1).
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1.3) Accélération d'une particule de fluide

Une particule P est située en M 1(x1, y1, z 1, t)  
au temps t et en M 2(x2, y2, z 2, t ' ) au temps

t '=t+ δ t

Cette particule a pour vitesse
u=h1(x (t) , y (t ) , z (t ) , t)

v=h2( x (t) , y (t) , z (t) , t)

w=h3(x (t) , y( t) , z (t ) , t )

L'accélération selon x est égale à :

du
dt

= d
dt

(h1( x( t) , y (t) , z (t ) ,t ))

du
dt

=
∂ h1

∂ x
dx
dt

+
∂h1

∂ y
dy
dt

+
∂ h1

∂ z
dz
dt

+
∂ h1

∂ t
dt
dt

du
dt

=
∂ h1

∂ x
u+

∂ h1

∂ y
v+

∂ h1

∂ z
w+

∂ h1

∂ t

du
dt

=(u ∂
∂ x

+ v ∂
∂ y

+ w ∂
∂ z

+ ∂
∂ t

)h1=(u ∂
∂ x

+ v ∂
∂ y

+ w ∂
∂ z

+ ∂
∂ t

)u

c'est la même chose selon y et z ; du coup l'accélération totale s'écrit :

d V⃗
dt

=∂ V⃗
∂ t

+ (V⃗ .⃗grad ) V⃗  Ou 
d V⃗
dt

=∂ V⃗
∂ t

+ (V⃗ . ∇⃗ )V⃗  (nabla =opérateur gradient)

Cette dérivée est la dérivée particulaire, appelée aussi dérivée lagrangienne ; c'est la dérivée en 
suivant la particule dans son mouvement par rapport à un repère fixe.

A chaque instant on peut dessiner en chaque point de l'espace le vecteur vitesse correspondant, on 
obtient le champ de vitesse à cet instant.
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Le premier terme du membre de droite est 
l'accélération locale V (M 1, t ' )−V (M 1,t )

Le deuxième terme est  l'accélération advective
V (M 2,t ')−V (M 1, t ' ) .

La même formule de dérivée particulaire est valable pour des grandeurs scalaires.

Par exemple, la dérivée particulaire de la température T est donnée par :
d T
dt

=∂ T
∂ t

+ (V⃗ . g⃗rad )T

1.4) Lignes de courant

Une ligne de courant est une ligne tangente en chacun de ses points au vecteur vitesse du point à un 
instant t.

Note : la ligne de courant ne correspond pas forcément au trajet d'une particule de fluide.  Elle lie 
différentes particules dont elle est tangente aux vitesses.

• Les lignes de courant changent de t à t'
• Si l'écoulement est permanent, ces lignes ne varient pas et coïncident avec les trajectoires
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• les lignes de courant satisfont aux équations différentielles :
dx
u

=dy
v

= dz
w

• un volume de fluide limité par des lignes de courant qui s'appuyent sur une courbe fermée 
est un tube de courant (voir figure ci-dessous)

2) Equation de continuité  

Une équation fondamentale en mécanique des fluides est le principe de la conservation de la masse. 
Elle indique que, au cours d'un écoulement conservatif,  la masse se conserve.

2.1) Equation
 Soit le parallélépipède centré en M de volume 
dV = dx dy dz

Au temps t, la masse contenue dans ce volume 
est :
Mt = ρt dx dy dz

La masse au temps t' = t + dt est :

Mt' = ρ(t+ dt )dx dy dz

la variation de masse pendant dt est :

Mt' – Mt = (ρ(t+ dt )−ρ(t ))dx dy dz

Mt' – Mt = 
∂ρ
∂ t

dx dy dz dt

Mais il faut aussi prendre en compte le flux entrant (sortant) de masse dans le volume.
En se concentrant d'abord aux échanges selon l'axe x :
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la masse algébrique entrant par la face 1 pendant dt est :

M 1x=(ρu)x dy dz dt          unite kg*m-3*m*s-1*m2*s = kg

la masse algébrique sortant par la face 2 pendant dt est :

M 2x=(ρu)(x+ dx)dy dz dt

Pendant dt, l' « excès de masse sortante » (algébrique) est :

(M 2−M 1)x=((ρu)(x+ dx)−(ρu)x)dy dz dt

(M 2−M 1)x=
∂(ρu)
∂ x

dx dy dz dt

C'est la même chose selon y et z; donc l'excès de masse total est  :

M 2−M 1=(
∂(ρu)
∂ x

+
∂(ρ v )
∂ y

+
∂(ρw)

∂ z
)dx dy dz dt

M 2−M 1=divergence (ρV⃗ )dx dy dz dt=∇⃗ .(ρ V⃗ )dx dy dz dt

La variation de la masse prend en compte  les deux termes précédents:  Mt' – Mt et M2 -M1  ce qui 
donne le résultat global de :

variation de masse=(
∂ρ
∂ t

+ ∇⃗ .ρ V⃗ )dxdy dz dt

Dans un écoulement conservatif (sans source ni puits), l'équation de conservation de la masse est :

∂ρ
∂ t

+ ∇⃗ .(ρV⃗ )=0

Notes : * On peut aussi l'écrire avec les formules précédentes :
∂ρ
∂ t

+
(M 2−M 1)
dx dy dz dt

=0

si (M 2−M 1)> 0 l'excès de flux est sortant donc on a forcemment ∂ρ< 0
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*  exercice : démontrez que ∇⃗ .(ρV⃗ )=ρ∇⃗ .(V⃗ )+ (V⃗ . ∇⃗ )ρ

* Si il existe une source ou un puits dans l'écoulement et que celui-ci n'est plus conservatif, alors 
l'équation devient :

∂ρ
∂ t

+ ∇⃗ .(ρV⃗ )=ρqs

avec qs débit de masse par unité de volume (cas d'une source si qs est positif, d'un puits si
qs est négatif).

Quelle est l’unité de qs ?  1er terme à gauche kg.m-3.s-1 ;  2e terme à gauche  m-1.kg.m-3.m.s-
1=kg.m-3.s-1 ; donc à droite : qs est en s-1

2.2) Autre écriture et cas particuliers

L'équation de conservation de la masse peut aussi s'écrire :
∂ρ
∂ t

+ ∇⃗ .(ρV⃗ )=0

∂ρ
∂ t

+
∂(ρu)
∂ x

+
∂(ρv)
∂ y

+
∂(ρ w)

∂ z
=0

∂ρ
∂ t

+ρ ∂u
∂ x

+u
∂ρ
∂ x

+ρ ∂ v
∂ y

+v
∂ρ
∂ y

+ρ ∂w
∂ z

+w
∂ρ
∂ z

=0

en changeant l'ordre des termes :

(∂ρ
∂ t

+u
∂ρ
∂ x

+v
∂ρ
∂ y

+w
∂ρ
∂ z

)+(ρ ∂u
∂ x

+ρ ∂ v
∂ y

+ρ ∂ w
∂ z

)=0

(∂ρ
∂ t

+(V⃗ . ∇⃗ )ρ)+ρ∇⃗ . V⃗ =0

L'équation de conservation de la masse peut aussi s'écrire :

Dρ
Dt

+ ρ∇⃗ .V⃗ =0

Attention à ne pas mélanger les deux écritures !!!

cas particuliers :

• Pour un écoulement conservatif permanent, alors l'équation devient :

∇⃗ .(ρV⃗ )=0 car 
∂ρ
∂ t

=0

• Pour un écoulement conservatif d'un fluide incompressible, l'équation devient :

∇⃗ .V⃗ =0   car 
Dρ
Dt

=0

La divergence de la vitesse est nulle.
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Supplément :   Théorème de flux-divergence, appelé aussi Théorème de Gauss-Ostrogradski (ou
Ostrogradsky)  ce théorème affirme l'égalité entre l'intégrale de la divergence d'un champ vectoriel
sur un volume dans R3  et le flux de ce champ à travers la frontière du volume (qui est une 
intégrale de surface).

Note historique
Le théorème a été découvert pour la première fois par Lagrange en 1762, puis redécouvert de façon 
indépendante par Gauss en 1813, puis par Siméon-Denis Poisson en 1824 et par Ostrogradski, qui a 
également donné la première preuve du théorème général, en 1826. Il a été encore découvert par 
Green en 1828, et indépendamment par Frédéric Sarrus toujours en 1828. 
Note : Gauss (allemand 1777-1855) – Thm lié à l'électromagnétisme
Ostrogradski (russe-ukrainien 1801-1862)
Green (GB 1793-1841) a publié un THM proche dans son Essai sur l'application de l'analyse 
mathématique aux théories de l'électricité et du magnétisme paru en 1828.

Le théorème peut aussi être appliqué de manière équivalente à un scalaire :

V⃗ . n⃗ est la composante de la vitesse qui est orthogonale à la surface du volume
Selon son signe, la divergence exprime la dispersion ou la concentration d’une grandeur (telle une 
masse par exemple) et le théorème précédent indique qu’une dispersion au sein d’un volume 
s’accompagne nécessairement d’un flux total équivalent sortant de sa frontière (ou au contraire, 
concentration implique flux entrant). 

Le débit total Q traversant une surface a pour définition :

    unité ?  m.s-1.m2=m3.s-1
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* Si le fluide est incompressible, l'équation de continuité d'un écoulement conservatif se réduit à : 
∇⃗ .V⃗ =0

Le théorème de Gauss-Ostrogradski nous indique donc que :

Le débit total à travers toute surface fermée S est nul.

Exemple : Etude de l'écoulement d'un fluide incompressible dans un tuyau de section variable 

Si l'on considère un volume enclos dans une surface fermée S ( S=S1∪S 2∪S tube ), alors :
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En débit, cela peut s'écrire :

3) Fonction de courant  

Pour un écoulement plan (i.e., bidimensionnel, par exemple dans le plan xy), avec l'hypothèse que 
le fluide est incompressible, l'équation de continuité se réduit :

∇⃗ .V⃗ =∂ u
∂ x

+ ∂ v
∂ y

=0

il existe une fonction ψ=ψ( x , y) telle que :

u=
∂ψ
∂ y

et v=
−∂ψ
∂ x

ψ=ψ( x , y) est appelée fonction de courant.
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Note     :   On sait que pour tout vecteur A⃗ , on a :   
 divergence du rotationnel de A⃗=∇⃗ .( r⃗ot A⃗)=∇⃗ .(∇⃗∗ A⃗)=0

Comme ∇⃗ . V⃗=0 , on pose le vecteur Ψ⃗=(0,0, Ψ)
et V⃗ =r⃗ot Ψ⃗=∇⃗∗Ψ⃗
Vérifiez que vous obtenez les formules de la fonction de courant données ci-dessus.

Propriétés des fonctions de courant     :  

• les lignes ψ=C ste coïncident avec les lignes de courant

rappel les lignes de courant sont telles que : 
dx
u

= dy
v

 donc −v dx+ u dy=0

En remplacant u et v dans cette formule par l'expression en fonction de ψ  , on obtient :

−v dx+u dy=−(−
∂ ψ
∂ x

)dx+(
∂ψ
∂ y

)dy=(
∂ψ
∂ x

)dx+(
∂ψ
∂ y

)dy=d ψ=0

* le long d'une ligne de courant  ψ=C ste
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Soit Q le débit entre ces deux lignes de courant

ex S = AB*1  l'exercice est effectué sur une épaisseur unitaire (dz=1)

Q=∫y1

y2

d Ψ=Ψ2−Ψ1=δΨ

δΨ=Ψ2−Ψ1=Q  Débit (ou flux) entre les deux lignes de courant unité m3/s

En océanographie, le Sverdrup, nommé en l'honneur du pionnier océanographique Harald Sverdrup 
(Norvège 1888-1955), est une unité de mesure du transport de volume, utilisée pour mesurer les 
débits des courants océaniques. Il est équivalent à 106 m³/s.
Exemples    
Le Gulf Stream transporte environ 30 Sv le long des côtes de Floride, et atteint 100 Sv vers 60°W, 
alors que les courants passant le détroit de Behring ou le détroit de Gibraltar ne sont que de 1 Sv. Le
courant circumpolaire antarctique transporte en moyenne 130 Sv lorsqu'il traverse le passage de 
Drake au sud de la Terre de Feu (Jean-François Minster, La machine-océan, 1997).
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EXO : Le Courant Nord a un flux de 1 Sv en moyenne. En été, si on considère que ce courant fait 
30km de large, 100 m de profondeur, quelle est sa vitesse moyenne ?

4) Ecoulement irrotationnel  

La description spatio-temporelle d'un écoulement plan est :

4.1 ) Rotation

Le cas simplifié d'un écoulement bidimensionnel dans le plan xy est traité.  
On isole un élément fluide de section dx dy,  qui subit une rotation pendant un temps dt. 

Le taux de rotation de cet élément fluide, dxdy , autour d'un axe passant par z, en considérant comme 
positif le sens des aiguilles d'une montre, peut être exprimé en fonction des vitesses, u et v, et en 

fonction des variations des vitesses
∂ u
∂ y

dy et
∂v
∂ x

dx .
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La rotation de la face dx est :  
(v+ ∂ v

∂ x
dx−v )dt

dx dt
=∂ v

∂ x

La rotation de la face dy est :  
−(u+ ∂ u

∂ y
dy−u)dt

dy dt
=−∂ u

∂ y

Le taux net de rotation Ωz de cet élément fluide, dxdy , autour de l'axe  z représente la moyenne de
rotation des faces dx et dy ; on le définit alors ainsi :

Ωz=
1
2
( ∂ v
∂ x

−∂ u
∂ y

)

Si l'écoulement est 3D, le même raisonnement peut être fait pour chaque face du parallelepipède 
(dxdydz) :

Ωx=
1
2
( ∂ w
∂ y

−∂ v
∂ z

)  et Ω y=
1
2
(∂ u
∂ z

−∂ w
∂ x

)

Le vecteur  Ω⃗ est appelé vecteur rotation.
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Le vecteur tourbillon, lui, est défini comme le rotationnel du champ de vitesse du fluide ∇⃗×V⃗ .

Le vecteur rotation Ω⃗ est égal à la moitié du vecteur tourbillon Ω⃗=1
2
(∇⃗×V⃗ )

4.12) Ecoulement irrotationnel

* Si Ω⃗=1
2
(∇⃗×V⃗ )= 0⃗ en tout point, l'écoulement est irrotationnel.

* Si l'écoulement est plan (dans le plan xy), alors w=0 et ∂
∂ z

=0

Ωx=
1
2
( ∂ w
∂ y

−∂ v
∂ z

)=0

Ω y=
1
2
(∂ u
∂ z

−∂ w
∂ x

)=0

Ωz=
1
2
( ∂ v
∂ x

−∂ u
∂ y

)

Pour que l'écoulement soit irrotationnel, il faut et il suffit que cette troisième composante soit aussi
nulle.

Un écoulement plan tel que 
∂ v
∂ x

=∂ u
∂ y

en tout point est irrotationnel.

5) Potentiel de vitesses  

Dans un écoulement irrotationnel, il existe une fonction φ , appelée potentiel des vitesses telle 

que V⃗ =⃗grad φ=∇⃗ φ

Soit : u=∂φ
∂ x

 ; v=∂φ
∂ y

 ;   w=∂φ
∂ z

Exercice : vérifiez que quelque soit le scalaire q, on a toujours

r⃗ot (⃗grad q)=∇⃗×⃗grad q=0⃗

d' ou l'introduction du potentiel de vitesse pour un écoulement irrotationnel.

Remarques :

• On dit  que V⃗ dérive du potentiel φ
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• On parle d'écoulement « potentiel »  ou « à potentiel de vitesses »

• les surfaces ou lignes équipotentielles sont telles que φ est constante

φ(x , y , z)=C ste
ou φ(x , y)=C ste

• Si le fluide est incompressible  et l'écoulement conservatif  (donc ∇⃗ . V⃗ =0 ) et si V⃗
dérive du potentiel φ (tel que V⃗ =⃗grad φ=∇⃗ φ ), alors

∇⃗ . g⃗rad φ=∇⃗ . ∇⃗ φ=Δ φ=0

Un écoulement irrotationnel d'un fluide incompressible est tel que φ satisfait l'équation 
de Laplace ; i.e. La fonction φ est harmonique.

Exercice Ecrire la formule en x, y et z du Laplacien

6) Ecoulement potentiels plans  

6.1 réseau des lignes   ψ et φ

Pour un écoulement plan en (xy), incompressible et irrotationnel, le potentiel des vitesses φ et la
fonction de courant ψ existent et sont liés par :

V⃗ =⃗grad φ=∇⃗ φ donc  u=∂φ
∂ x

 ; v=∂φ
∂ y

 

ψ lignes de courant donc u=∂ψ
∂ y

 ; v=−∂ψ
∂ x

 venant de ∇⃗×V⃗ =0⃗

∂φ
∂ x

=∂ψ
∂ y

et 
∂φ
∂ y

=−∂ψ
∂ x

sont les conditions de Cauchy-Riemann qui doivent être 

satisfaites par tout écoulement plan en (xy) et irrotationnel d’un fluide incompressible

Propriétés     :  
* La condition d'irrotationnalité dans le plan (xy) donne :

∂ v
∂ x

−∂ u
∂ y

=0

Comme  u=∂ψ
∂ y

 ; v=−∂ψ
∂ x

,

on peut écrire cette condition d'irrotationnalité sous la forme :
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∂
∂ x

(−
∂ψ
∂ x

)− ∂
∂ y

(
∂ψ
∂ y

)=0

−∂2 ψ
∂ x2 −∂2 ψ

∂ y2 =0 soit  Δ ψ=0 ψ est aussi harmonique

* Nous avons :

V⃗ =⃗grad φ=∇⃗ φ   soit les vecteurs V⃗  et les lignes  φ=C ste
sont orthogonaux

et 

les vecteurs V⃗ sont tangents aux lignes de courant ψ=C ste

donc :

Les lignes équipotentielles φ=C ste
et les lignes de courant ψ=C ste

sont orthogonales et 
forment un réseau orthogonal.

Si une ligne équipotentielle φ=C ste
coupe une ligne de courant ψ=C ste

, elles se coupent 
orthogonalement.  Ces lignes forment un réseau orthogonal.

Note : les frontières – solides ou surfaces libres – représentent des lignes de courant (car il n'y a pas 
d'écoulement au travers).

6.2 exemples d'écoulements  

Toujours dans le plan (xy), pour un fluide incompressible et un écoulement irrotationnel

1) Ecoulement rectiligne uniforme  

u=U =C ste
et v=0

Déterminer φ et ψ

les cauditions de Cauchy-Riemann (CR) donnent :

u=∂φ
∂ x

=∂ψ
∂ y

et v=∂φ
∂ y

=−∂ψ
∂ x

du coup, commençons par calculer φ

u=∂φ
∂ x

=U   donc φ=Ux+ f ( y)
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∂φ
∂ y

= f ' ( y )

or v=∂φ
∂ y

=0    donc f ' ( y)=0   soit f ( y)=C ste

et l'on a φ=Ux+ C ste

 La même démarche est à appliquer pour trouver ψ  v=∂φ
∂ y

=−∂ψ
∂ x

=0

de la deuxième condition de CR, on a :

−∂ψ
∂ x

=0   donc ψ=C ste+ g (y )

∂ψ
∂ y

=g ' ( y)

or la première condition de CR donne :
∂ψ
∂ y

=U  donc ψ=Uy+ C ste

En résumé, on a ψ=Uy+ B et φ=Ux+ A  avec A et B deux constantes données

Cas A=B=0

Les lignes de courant ψ sont des droites horizontales dans le sens du courant U ; les lignes 
équipotentielles φ sont des droites verticales.  On vérifie que les lignes équipotentielles et les 
lignes de courant forment bien un réseau orthogonal.
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(Remerciement pour ce tableau de Graf et Altinakar)
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2) Ecoulement radial autour d'une source ou d'un puits  

Sur les figures 2 et 3 du Tableau CN-1, on observe une symétrie par rapport à l'axe z donc cet 
exercice est plus facile à résoudre en coordonnées polaires (r, θ )

Les composantes de la vitesse V sont données, en coordonnées cartésiennes, par :

u=V r cosθ V r est la vitesse radiale

v=V rsinθ avec Q=V r(2π r ) le débit unitaire

Si Q est positif, il s'agit d'une source ; si Q est négatif, il s'agit d'un puits

La vitesse de l'écoulement peut donc s'écrire en 
coordonnées polaires ainsi :

V⃗ =V r e⃗r=
Q

2π r
e⃗r

V r=
Q

2π r
et V θ=0

Les conditions de CR est coordonnées polaires s'écrivent :

V r=
∂φ
∂ r

=1
r

∂ψ
∂θ et V θ=

1
r

∂φ
∂θ =−∂ψ

∂ r

Comme précédemment, pour chaque fonction, il faut intégrer par rapport à une composante, ex r, 
puis par rapport à l'autre composante, ex θ  :

∂φ
∂ r

=V r=
Q

2π r
donc φ= Q

2π
ln (r)+ f (θ)

∂φ
∂θ= f ' (θ) et

1
r

∂φ
∂θ =V θ=0 donc f ' (θ)=0  ;  f (θ)=C ste=C1

φ= Q
2π

ln (r)+ C1
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V r=
1
r

∂ψ
∂θ = Q

2 π r
donc 

∂ψ
∂θ = Q

2π
et ψ= Q

2π
θ+ g (r)

or V θ=−∂ψ
∂ r

=0=−g ' (r ) donc g (r)=C ste=C 2

En posant C= Q
2 π

, on obtient les fonctions:

φ=C ln (r)+ C 1  et ψ=C θ+ C 2

Les lignes de courant ψ sont des ½ droites issues du point d'origine du repère (0,0) ; les lignes 
équipotentielles φ sont des cercles concentriques autour de (0,0).  On vérifie que les lignes 
équipotentielles et les lignes de courant forment bien un réseau orthogonal.

Exercice : trouvez les fonctions φ et ψ en utilisant les coordonnées cartésiennes x et y.

3) Ecoulement «     tourbillon     »  

C'est le cas « inverse » de l'écoulement autour d'une source ou d'un puits :

φ=C θ+ C1 et ψ=C ln (r )+ C 2

avec 

V r=
∂φ
∂ r

=0 et V θ=
1
r

∂φ
∂θ =C

r
Les lignes de courant ψ sont des cercles concentriques autour de (0,0) ; les lignes 
équipotentielles φ sont des ½ droites issues du point d'origine du repère (0,0). 

4) Ecoulement avec un point d'arrêt  

Les lignes équipotentielles φ= A
2

(x2− y2) sont des hyperboles orthogonales aux lignes de 

courant :

ψ=Axy  qui sont des  hyperboles équilatères.

Les composantes de vitesse en un point sont: 

u=∂φ
∂ x

=Ax et v=∂φ
∂ y

=−Ay
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Différents choix de frontières (qui sont des lignes de courant particulières) sont possibles amenant à
des écoulements pouvant être définis comme :
i)  Ecoulement dans un coin 
ii) Ecoulement contre une paroi (jet orthogonl à la paroi)
iii) Ecoulement dans une conduite à section variable 
iv) Ecoulement dans un embranchement de conduite (avec une légère déformation des lignes de 
courant près de l'embranchement).

(voir Figures suivantes)

(Remerciement pour ces figures de Graf et Altinakar)

5) Ecoulement entre deux parois faisant un angle   α

Les fonctions sont définies en coordonnées polaires par :

φ= B
n

r n cos(n θ)

ψ= B
n

rn sin(nθ)  

B est une constante ainsi que n qui est lié à l'angle α entre les deux parois avec la fonction 
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suivante : α n=π  soit l'angle α=π
n

Différents cas sont possibles suivant l'angle et sont montrés dans la figure suivante.

Dans le cas d'un angle droit α=π
2

, soit n=2, nous pouvons vérifier que nous ré-obtenons le cas

de l'écoulement dans un coin obtenu dans la section précédente :

φ= B
2

r 2cos (2θ)= B
2

r2(cos2θ−sin2θ)= B
2

(x2− y2)

ψ= B
2

r2 sin (2θ)= B
2

r2 2sinθ cosθ=Bxy  

(Remerciement pour ces figures de Graf et Altinakar ; attention dans ces figures l'angle α est noté θ )

Exercice     :   notez les différences des fonctions (entre cette section 5 et la section précédente) dans le 
cas de l'écoulement le long d'une paroi plane ; et la différence au niveau aussi de l'écoulement dans 
le plan « entier ».

6) Ecoulements superposés  

Rappel : Les fonctions φ et ψ , si elles existent, doivent satisfaire l'équation de Laplace, qui 
est de forme linéaire :

Δ φ=0  et Δ ψ=0

Donc la somme de plusieurs fonctions φ1+ φ2 et/ou ψ1+ ψ2 satisfait également à 
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l'équation de Laplace, pour autant que chacune des fonctions séparées satisfasse à l'équation de 
Laplace. 

La somme de deux écoulements plans, incompressibles et irrotationnels est un écoulement  plan, 
incompressible et irrotationnel.

A partir de deux (ou plusieurs) réseaux d'écoulements plans simples on obtient un autre réseau 
d'écoulement plan superposé.

Exemple d'une source dans un écoulement uniforme 

Soit un écoulement parallèle à l'axe x, avec une vitesse U ∞  où: 

φ1=U ∞ x  et ψ1=U ∞ y

et un écoulement radial d'une source avec un débit unitaire,  où: 

φ2=
Q
4π

ln (x2+ y2) et ψ2=
Q
2π

arctan( y
x
)

Objectifs :
a) calculez les fonctions φ et ψ associées à cet écoulement superposé
b) calculez la vitesse en tout point
c) calculez les coordonnées d'un point d'arrêt  A ou la vitesse est toujours nulle

a) La superposition de ces deux écoulements donne: 
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φ=φ1+ φ2=U ∞ x+ Q
4π

ln (x2+ y2)

ψ=ψ1+ ψ2=U ∞ y+ Q
2π

arctan ( y
x
)

Les lignes de courant sont tracées ; on peut observer qu' elles se divisent en deux régions. Les lignes
provenant de la source restent à l'intérieur de la courbe BAB'. Les lignes issues de l'écoulement 
uniforme se répartissent à l'extérieur de cette courbe BAB'. (Figure a).

(Remerciement pour ces figures de Graf et Altinakar)

Cela forme ce qui est appelé 1/2 corps de Rankine (ingénieur et physicien écossais 1820-1872).
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Exemple de dessin évaluant simplement l'allure des lignes de courant.  Cas particulier avec

U ∞=1 pour dessiner ψ1 et 
Q
2π

arctan( y
x
)=1 pour dessiner la « première » ligne 

de courant de la source ψ2  .

b) les composantes de la vitesse en tout point sont données par :

u=u1+ u2=U ∞+
Q
2π

( x

x2+ y2 ) et

v=v1+ v2=0+ Q
2π

( y

x2+ y2 )=
Q
2π

( y

x2+ y2 )

c) Les coordonnées du point d'arrêt A sont telles que u A=v A=0

u A=U ∞+
Q
2π

(
x A

x A
2+ y A

2 )=0
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v A=
Q
2 π

(
y A

xA
2+ y A

2 )=0 donc yA=0   et xA=− Q
2π U ∞

Le point d'arrêt est situé sur l'axe de symétrie (y=0). On remarque que :

• plus l'écoulement uniforme est fort ( U ∞ augmente), plus le point d'arrêt se rapproche de 

l'origine (la valeur absolue de xA baisse) ;

• plus la source est forte ( Q augmente), plus le point d'arrêt s'éloigne de l'origine (la valeur

absolue de xA augmente).

On peut remplacer chaque ligne de courant par un contour solide. En effet, si l'on suppose solidifié 
tout le fluide à l'intérieur de cette ligne de courant, l'écoulement à l'extérieur n'est pas modifié. On 
remplace alors la courbe BAB' par une frontière solide, les lignes de courant représentant donc un 
écoulement autour d'un solide (demi-corps) placé axi-symétriquement dans un écoulement uniforme
(voir Fig. b). 

A une grande distance (x tendant vers l'infini  u=U ∞ ), la largeur, D, de ce demi-corps est 

atteinte, laissant passer tout le débit unitaire ( Q=D∗1∗U ∞ ); on a donc: D= Q
U ∞

.

Supplément le cas d'un doublet (et doublet dans un 
écoulement uniforme) peut être étudié et mis en relation 
avec les formules des bipoles électriques.

Un doublet est la superposition de deux écoulements 
radiaux, une source et un puits.

Sur la figure de gauche, les deux sont mis avec leur origine 
sur l'axe x.
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Annexe : Exemple de fonction de courant (figure 2 ci-dessous) calculée avec Ariane 
(http://www.univ-brest.fr/lpo/ariane; Blanke and Raynaud [1997]; Blanke et al. [1999])

Rousselet, L., Doglioli, A.M., Maes, C., Blanke, B., Petrenko, A.A. (2016). Impacts of 
mesoscale activity on the water masses and circulation in the Coral Sea. J. Geophys. Res. 
Oceans, 121, 7277-7289, doi:10.1002/2016JC011861 

(L. Rousselet, en M2 OPB en 2014/15, a débuté sa thèse sous la direction d'A. Petrenko et A. 
Doglioli en octobre 2015)

Figure 1 : Annual average of the AVISO velocity field in the Coral Sea (arrows). Route of the 
Bifurcation cruise (brown). Positions of CTD stations (blue and red). Trajectory and positions of 
Argo profiles (orange line and diamonds). The approximate position of anticyclonic eddy A is 
shown with bold blue arrows. The geographical limits of the Lagrangian integrations made with 
Ariane are drawn in green. 

NVJ : North Vanuatu Jet ; NCJ : North Caledonian Jet.
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Figure 2 : Black lines : stream function (fonction de courant) showing the full surface circulation 
that connects the NVJ and SLI sections. A fraction of this connection is achieved by eddies (not 
shown), and the diamonds show the contribution of anticyclonic eddies to this fraction (colorbar in
%).

A Lagrangian analysis using the daily surface velocity from the NLOM model (1/32°) highlights 
the transfer of particles from the NVJ to the NCJ through eddy circulation (3 % of the flow 
crossing the SLI section). The contribution of anticyclonic eddies to this eddy-induced leakage can
reach up to 70-90 %.
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