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CHAPITRE IV – HYDRODYNAMIQUE 

 

1. Equation dynamique des fluides parfaits incompressibles 

 

Le deuxième principe de Newton indique que, dans un référentiel galiléen (fixe), il existe une 

relation de proportionnalité entre l’accélération 𝛾⃗ d’une particule et la force 𝐹⃗ à laquelle elle est 

soumise : 

  𝐹⃗ = 𝑚𝛾⃗ 

m est un coefficient positif caractéristique de la particule, appelé masse du point matériel. 

 

De-là découle l'équation d'Euler (établie par Léonhard Euler en 1755) qui s'applique dans le cas 

d'un fluide parfait, c’est-à-dire un fluide non visqueux, et sans conductivité thermique: 

 

𝜌
𝑑𝑉⃗⃗

dt
= −grad⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗𝑝 + 𝜌𝑓 

 

avec la dérivée particulaire suivante (rappel) : 

𝑑𝑉⃗⃗

𝑑𝑡
=

𝜕𝑉⃗⃗

𝜕𝑡
+ (𝑉⃗⃗ ⋅ 𝛻⃗⃗)𝑉⃗⃗ 

 

Cette dérivée est la dérivée particulaire, appelée aussi dérivée lagrangienne ; c'est la dérivée 

en suivant la particule dans son mouvement par rapport à un repère fixe. (voir Chap III) 

 

Note : Si le mouvement est nul ou uniformément accéléré (voir Chap II), on obtient l'équation 

fondamentale de l'hydrostatique : 

−𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑝 + 𝜌𝑓 = −𝛻⃗⃗𝑝 + 𝜌𝑓 = 0⃗⃗ 

 

ATTENTION, il faut choisir un référentiel avant de pouvoir écrire ce champ. 

 

* Si z est orienté vers le zénith, et que les forces de volume se limitent à la gravité, alors 

l'équation d'Euler générale peut s'écrire sous la forme de 3 équations scalaires: 

  𝜌
𝑑𝑢

dt
= −

𝜕𝑝

𝜕𝑥
 

  𝜌
𝑑𝑣

dt
= −

𝜕𝑝

𝜕𝑦
 

  𝜌
𝑑𝑤

dt
= −

𝜕𝑝

𝜕𝑧
− 𝜌𝑔 

 

Dans ce cas, on peut dire que 𝑓dérive du potentiel -gz et écrire : 𝑓 = grad⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗(−𝑔𝑧) = 𝛻⃗⃗(−𝑔𝑧) 

 

L'équation d'Euler devient donc : 

𝜕𝑉⃗⃗

𝜕𝑡
+ (𝑉⃗⃗ ⋅ 𝛻⃗⃗)𝑉⃗⃗ = −

1

𝜌
𝛻⃗⃗𝑝 + 𝑓 = −

1

𝜌
𝛻⃗⃗𝑝 + 𝛻⃗⃗(−𝑔𝑧) 

Si la masse volumique est constante, alors 

𝑓 =
1

𝜌
𝛻⃗⃗(−𝜌𝑔𝑧) = −

1

𝜌
𝛻⃗⃗(𝜌𝑔𝑧) 

et l'équation d'Euler peut s'écrire : 

 

𝜕𝑉⃗⃗

𝜕𝑡
+ (𝑉⃗⃗ ⋅ 𝛻⃗⃗)𝑉⃗⃗ = −

1

𝜌
𝛻⃗⃗(𝑝 + 𝜌𝑔𝑧) 
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L'écoulement a 4 inconnues : u, v, w et p.  L'équation d'Euler fournit 3 équations scalaires. On a 

donc besoin de l'équation de conservation de la masse (aussi appelée équation de continuité) : 
𝜕𝜌

𝜕𝑡
+ 𝛻⃗⃗ ⋅ (𝜌𝑉⃗⃗) = 0  pour pouvoir résoudre le système. 

 

2. Equations intrinsèques 

 

Hypothèses : 

• l'écoulement est bidimensionnel dans le plan (xz), z orienté vers le zénith, 

• 𝑓 dérive du potentiel -gz  (cela sous-entend que le fluide est considéré comme parfait) 

• le fluide est parfait et la masse volumique est constante 

 

 
 

Soit une ligne courbe quelconque de vecteur unitaire tangent 𝑠 et de vecteur normal 𝑛⃗⃗, si on écrit 

l’équation d'Euler dans le repère (𝑠,𝑛⃗⃗) avec pour vecteur vitesse 𝑉⃗⃗ = (𝑉𝑠, 𝑉𝑛): 

Suivant 𝑠 : 
𝑑𝑉𝑠

𝑑𝑡
=

𝜕𝑉𝑠

𝜕𝑡
+ 𝑉𝑠

𝜕𝑉𝑠

𝜕𝑠
+ 𝑉𝑛

𝜕𝑉𝑠

𝜕𝑛
= −

1

𝜌

𝜕(𝑝+𝜌𝑔𝑧)

𝜕𝑠
   1) 

 

Suivant  𝑛⃗⃗   
𝑑𝑉𝑛

𝑑𝑡
=

𝜕𝑉𝑛

𝜕𝑡
+ 𝑉𝑠

𝜕𝑉𝑛

𝜕𝑠
+ 𝑉𝑛

𝜕𝑉𝑛

𝜕𝑛
= −

1

𝜌

𝜕(𝑝+𝜌𝑔𝑧)

𝜕𝑛
   2) 

 

3. Equation de Bernoulli     (1738) 

 

Daniel Bernoulli est un médecin, physicien et mathématicien suisse, né à Groningue le 8 février 

1700, et mort à Bâle, le 17 mars 1782.  (adapté de https://fr.wikipedia.org/wiki/Daniel_Bernoulli) 

Il étudie d'abord la médecine. Mais il s'intéresse aussi aux sciences mathématiques et naturelles, 

enseigne les mathématiques, l'anatomie, la botanique et la physique.  

Ami de Leonhard Euler, il travaille avec lui dans plusieurs domaines des mathématiques et de la 

physique, et partage avec lui dix fois le prix annuel de l'Académie des sciences de Paris, si bien qu'il 

s'en fait une sorte de revenu. Les différents problèmes qu'il tente de résoudre (théorie de l'élasticité, 

mécanisme des marées) le conduisent à s'intéresser et développer des outils mathématiques tels que 

les équations différentielles ou les séries. Il collabore également avec Jean le Rond d'Alembert dans 

l'étude des cordes vibrantes. Il fut le premier à utiliser un symbole (A.S.) pour désigner la fonction 

arc sinus. 

(« Bernoulli n'est évidemment pas une nouille », le « i » de son nom est au bout du nom et pas avant 

les deux l … merci pour sa mémoire). 

 

https://fr.wikipedia.org/wiki/Daniel_Bernoulli
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• 3A – Dérivation de la relation de Bernoulli 

 

 

Si les hypothèses de la section 

2 sont gardées et que la ligne 

courbe de la section précédente 

est une ligne de courant, alors  

 

𝑉⃗⃗ = (𝑉𝑠, 𝑉𝑛) = (𝑉, 0) 

 

et les équations d'Euler intrinsèques deviennent : 

 

1)   
𝜕𝑉

𝜕𝑡
+ 𝑉

𝜕𝑉

𝜕𝑠
= −

1

𝜌

𝜕(𝑝+𝜌𝑔𝑧)

𝜕𝑠
        

soit     
𝜕𝑉

𝜕𝑡
+

1

2

𝜕𝑉2

𝜕𝑠
= −

1

𝜌

𝜕(𝑝+𝜌𝑔𝑧)

𝜕𝑠
 

 

2) 0 = −
1

𝜌

𝜕(𝑝+𝜌𝑔𝑧)

𝜕𝑛
     

soit      𝑝 + 𝜌𝑔𝑧 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 sur toute ligne normale aux lignes de courant   

 

Si on fait l'hypothèse supplémentaire que l'écoulement est stationnaire 
𝜕𝑉

𝜕𝑡
= 0, alors la première 

équation 1) devient: 

 

𝜕𝑉

𝜕𝑡
+

1

2

𝜕𝑉2

𝜕𝑠
=

1

2

𝜕𝑉2

𝜕𝑠
= −

1

𝜌

𝜕(𝑝 + 𝜌𝑔𝑧)

𝜕𝑠
 

De plus comme le fluide est parfait, on peut transformer le deuxième terme en : 

−
1

𝜌

𝜕(𝑝 + 𝜌𝑔𝑧)

𝜕𝑠
= −

𝜕(𝑝/𝜌 + 𝑔𝑧)

𝜕𝑠
 

En déplaçant ce terme du côté gauche de l’équation, on obtient : 
𝜕

𝜕𝑠
(
1

2
𝑉2 +

𝑝

𝜌
+ 𝑔𝑧) = 0 

 

La relation de Bernoulli : 
1

2
𝑉2 +

𝑝

𝜌
+ 𝑔𝑧 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 est valable sur toute ligne de courant   

 

si les hypothèses suivantes sont vérifiées: 

• l'écoulement est bidimensionnel dans le plan (xz), z orienté vers le zénith, 

• 𝑓 dérive du potentiel -gz  (cela sous-entend que le fluide est considéré comme parfait) 

• le fluide est parfait et la masse volumique est constante 

• l'écoulement est permanent. 
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D'un point 1 à un point 2 le long d'une ligne de courant, on a : 
1

2
𝑉1

2 +
𝑝1

𝜌
+ 𝑔𝑧1 =

1

2
𝑉2

2 +
𝑝2

𝜌
+ 𝑔𝑧2 

 

 

Interprétation ingénieur (en divisant par g l'équation et en écrivant z=h) : 

 

 

 

Dans un écoulement à surface libre en contact avec l'atmosphère, la ligne piézométrique se confond 

avec la surface libre, qui constitue en même temps une ligne de courant. 

 

Applications : 

 

a) Turbine de Pelton 

 

Quelle est la vitesse de l'eau dans le jet d'une turbine de Pelton ? Si l'on suppose les pertes d'énergie 

(et donc le frottement) négligeables. 
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Hypothèse de Bernoulli vérifiées 

(attention pour la permanence, faire hypothèse 

d’un grand bassin ou d’une étude sur période 

courte, voir *). 
1

2
𝑉1

2 +
𝑝1

𝜌
+ 𝑔𝑧1 =

1

2
𝑉2

2 +
𝑝2

𝜌
+ 𝑔𝑧2 

Point 1 à la surface : V1=0, P1=patm 

Point 2 à la turbine : V2 ? , P2=patm 

donc 

𝑉2
2 = 2g ∗ (𝑧1 − 𝑧2) soit 𝑉2 = √2g ∗ (𝑧1 − 𝑧2) 

 

Cette formule est appelée la formule de 

Torricelli  (Evangelista Torricelli (1608-1647), 

physicien et mathématicien italien). 

*L’une des hypothèses de Bernoulli est la stationnarité. 

Pourquoi considère-t-on que l’écoulement est permanent alors qu’il y a une sortie d’eau ? 

On ne pourra le faire que si l’on mentionne que le bassin/réservoir est très grand et donc que cette 

sortie d’eau ne fait pas varier la hauteur de son contenu : le niveau z1 de la surface est considéré 

comme constant. 

De plus il faut noter que l’on dessine une/la ligne de courant sur laquelle on applique Bernoulli 

partant de la surface (même si on considère que la vitesse V1 de la particule de fluide y est nulle) et 

qui descend jusqu’à la conduite menant à la turbine. 

 

b) Tube de Pitot     (1732, avant l'équation de Bernoulli !) 

 

L’objectif est de mesurer la vitesse de l’écoulement (si le tube de Pitot est immobile) ou la 

vitesse relative du Tube de Pitot par rapport à l’écoulement si la plateforme soutenant le tube 

de Pitot est en mouvement. 

 

 

Si les hypothèses de Bernoulli sont vérifiées 

 

On choisit une ligne de courant entre le point B (point d'arrêt  vB=0) et le point A dans le fluide 

extérieur de masse volumique () 

 

La sonde est miniaturisée donc on considère que zA=zB 
1

2
𝜌𝑉𝐴

2 + 𝑝𝐴 =
1

2
𝜌𝑉𝐵

2 + 𝑝𝐵  et donc la vitesse de l 'écoulement est égale à: 
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     𝑉𝐴 = √
2(𝑝𝐵−𝑝𝐴)

𝜌
 

Si un manomètre (cf figure ci-dessus à droite) avec un fluide de masse volumique (2, fluide bleu 

dans le tube en U) permettait de mesurer la différence de pression, on aurait alors :   𝑉𝐴 = √
2𝜌2𝑔ℎ

𝜌
 

Annexe : 

« Le fonctionnement simple du tube de Pitot se comprend facilement dans un courant 
d’eau si l'on songe qu’une particule de fluide qui est dotée d’une certaine vitesse dispose, 
du fait de cette vitesse, d’un élan qui peut lui permettre de monter à une certaine hauteur. 
De même, toute personne qui lance une pierre verticalement sait que cette pierre montera 
d’autant plus haut qu’on lui donne une vitesse initiale forte. 

Lorsque l’on trempe sa main dans le courant d’un torrent (comme sur l’animation du site : 
https://fr.wikipedia.org/wiki/Tube_de_Pitot), on observe bien que l’eau monte à une certaine 
hauteur.  Dans la première expérience que Pitot a improvisée avec enthousiasme lorsque 
lui est venue l’idée de sa "Machine pour mesurer la vitesse des eaux courantes et le sil-
lage des vaisseaux" (1732, https://gallica.bnf.fr/ark:/12148/bpt6k35294.image.f543.langFR, 
Histoire de l'Académie royale des sciences avec les mémoires de mathématique et de 
physique tirés des registres de cette Académie), il a remplacé la main par un simple tuyau 
de verre coudé face au courant. Les particules d’eau qui montent dans le tube de verre 
voient très vite leur vitesse s’annuler (après stabilisation de la colonne d’eau en hauteur) : 
on n’a donc pas à craindre de perte d’énergie par frottement visqueux. 
 
Et, dans le cas de ce tube de Pitot, la hauteur h atteinte par l’eau dans le tube est bien : 
 

h =
𝑉2

2𝑔
. 

En 1732, entre deux piliers d’un pont sur la Seine à Paris, Pitot utilisa son instrument pour 
mesurer la vitesse du courant à différentes profondeurs. La présentation de ses résultats à 
l’Académie, plus tard la même année, revêt une importance considérable. En effet, les 
théories de l’époque, basées sur l’expérience de quelques ingénieurs italiens, prônaient 
que la vitesse du courant à une certaine profondeur d’une rivière était proportionnelle à la 
masse d’eau coulant au-dessus du point de mesure ; donc la vitesse du courant était vue 
comme augmentant avec la profondeur. Pitot apportait la preuve, grâce à son instrument, 
qu’en réalité la vitesse du courant diminuait avec la profondeur." 

[Source et plus d'informations sur https://fr.wikipedia.org/wiki/Tube_de_Pitot] 

 

c) Manche à air 

Les aérodynamiciens négligent les forces de masse (le terme 𝜌𝑔𝑧) 
1

2
𝜌𝑉1

2 + 𝑝1 =
1

2
𝜌𝑉2

2 + 𝑝2 

https://fr.wikipedia.org/wiki/Tube_de_Pitot
https://gallica.bnf.fr/ark:/12148/bpt6k35294.image.f543.langFR
https://fr.wikipedia.org/wiki/Tube_de_Pitot
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Conservation de la masse : 

𝑆1 ∗ 𝑉1 = 𝑆2 ∗ 𝑉2 

donc 𝑉2 =
𝑆1

𝑆2
∗ 𝑉1 

Si les hypothèses de Bernoulli sont vérifiées 

Ligne de courant entre le point 1 sur S1 et le 

point 2 sur S2 
1

2
𝜌𝑉1

2 + 𝑝1 =
1

2
𝜌𝑉2

2 + 𝑝2 

 

 

Il reste deux inconnues  P1 et P2      et une seule équation... 

On prolonge la ligne de courant vers l'extérieur à gauche jusqu'à un point de vitesse nulle (Vo=0 et 

Po=patm )  

du coup 

𝑝𝑎𝑡𝑚 =
1

2
𝜌𝑉1

2 + 𝑝1 =
1

2
𝜌𝑉2

2 + 𝑝2 et on obtient : 

     𝑝1 = 𝑝𝑎𝑡𝑚 −
1

2
𝜌𝑉1

2 

     𝑝2 = 𝑝𝑎𝑡𝑚 −
1

2
𝜌𝑉2

2 

Evidemment les phénomènes locaux (ex aux changements de courbes) ne sont pas décrits par 

l’équation de Bernoulli. 

 

Faire AN avec S1 = 1m2 ; S2=0,5m2 ; V1= 16 m/s ; =1,2 kg/m3 

Notes par rapport à la solution : comme S2 est 2 fois plus petite que S1, du coup forcément V2 est le 

double de V1 (32 m/s) ; si vous prenez une pression atmosphérique nulle, vous obtenez des 

pressions négatives : ce n’est pas faux, c’est dû au fait que ce sont des pressions relatives : elles 

sont plus petites que la pression atmosphérique. 

Ex  p1 = -153,6 Pa;       p2 = -614,4 Pa 

 

En pression totales  p1 = patm -153,6 Pa = 10^5 -153,6 = 99 846,4 Pa  < patm;    

p2 = patm -614,4 Pa        On observe qu’on a bien    p2 <p1 < patm 

 

d) Effet Venturi     (adapté de https://fr.wikipedia.org/wiki/Effet_Venturi) 

 

L'effet Venturi, du nom du physicien italien Giovanni Battista Venturi (1746-1822), est le nom 

donné à un phénomène de la dynamique des fluides où il y a formation d'une dépression dans une 

zone où les particules de fluides sont accélérées. 

 

« L'effet est une manifestation du principe de conservation de la masse. Une certaine quantité de 

matière passe par un orifice en une unité de temps. Si l'orifice voit sa taille réduite et que la quantité 

de matière en circulation est à la fois constante dans le temps (hyp de permanence de Bernoulli) et 

dans l'espace (débit), alors la vitesse de passage dans l'orifice augmente pour permettre à la-dite 

quantité de matière de circuler en totalité pendant la même unité de temps.  Du coup la pression 

diminue et cela fait "appel d'air ou appel de fluide" si il y a un passage vers l'extérieur. » 

 

Cet effet se rencontre dans de nombreuses situations de la vie courante : accélération du vent au 

passage d'un col de montagne, dans une ruelle ; circulation d'eau dans des canalisations ou rapides 

d'une rivière ; turbine d'avion ; etc. Dans toutes ces situations, le fluide (air, eau…) est peu ou pas 

compressible, et évolue en circulation forcée dans une conduite inextensible (flanc de montagne, 

murs, tuyau ou tubulure rigide, lit de rivière + gravité…). Ils subissent donc l'effet Venturi. 

https://fr.wikipedia.org/wiki/Effet_Venturi
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Ecoenergiesolution.com  

 

 
aerodynamismeavion.e-monsite.com 

 
tpeavions.e-monsite.com 

 
foils.worldpress.com 

 
Schéma de l'effet Bernoulli à Gibraltar 
(Océan Atlantique à gauche -ouest- et mer 
Méditerranée à droite -est). 

 
Application au Dé troit dé Gibraltar :    
Stommél ét al. [1973] avaiént é mis l’hypothé sé qué gra cé a  l'éffét Bérnoulli, lés éaux profondés péuvént 
é tré happé és par l’é coulémént dés éaux intérmé diairés accé lé rant vérs l'Atlantiqué.  
 
Kindér ét Parilla [87] ont én éffét mésuré s dés valéurs dé T ét S corréspondantés a  céllés dés éaux 
profondés a  l'ouést dé Gibraltar.  
 
Millot [2008] proposé finalémént un sché ma complét avéc la sortié dé plusiéurs typés d'éaux 
diffé réntés a  Gibraltar. 
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• 3B – Interprétation énergétique de l’équation de Bernoulli 

 
1

2
𝜌𝑉2 + (𝑝 + 𝜌𝑔𝑧) = 𝐸𝑛𝑒𝑟𝑔𝑖𝑒 𝑚é𝑐𝑎𝑛𝑖𝑞𝑢𝑒 𝑡𝑜𝑡𝑎𝑙𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 

 

L'équation de Bernoulli traduit la conservation de l'énergie mécanique totale par unité de volume au 

cours du mouvement permanent de ce fluide de masse volumique constante. 

 
1

2
𝜌𝑉2 représente l'énergie cinétique par unité de volume et (𝑝 + 𝜌𝑔𝑧) l'énergie potentielle par unité 

de volume. 

 

Attention l’unité classique de l’énergie est le Joule pour le terme classique de l’Energie cinétique 

écrit comme ½ mv2 (J=N.m = kg.m.s-2.m = kg m2.s-2) ; mais l’unité de l’énergie par unité de 

volume est le Joule divisé par des m3 (J/m3 =N.m/m3 = N.m-2 = Pa). C’est pour cela que dans 

l’équation, il y a aussi des termes de pression qui sont de façon classique en Pascal. 

 

• 3C – Ecoulement non permanent d'un fluide parfait de 𝜌 constante 

Le long d’une ligne de courant, on écrirait Bernoulli : 

 

1

2
𝑉1

2 +
𝑝1

𝜌
+ 𝑔𝑧1 =

1

2
𝑉2

2 +
𝑝2

𝜌
+ 𝑔𝑧2 + ∫

𝜕𝑉

𝜕𝑡
𝑑𝑠

2

1

 

 

 

• 3D - Ecoulement permanent d'un fluide parfait de 𝜌 non constante ; force de masse 

négligeable (cas atmosphérique, on néglige 𝜌 gz 

 

Cas d'un écoulement gazeux à grande vitesse ; on néglige la pesanteur. 

La loi de Laplace est valide donc 𝑝 = 𝑘𝜌𝛾 

avec 𝑘 = 𝐶𝑠𝑡𝑒  et 𝛾 =
𝐶𝑝

𝐶𝑣
  rapport constant des chaleurs spécifiques du gaz 

Exercice Exprimer 𝑉2 en fonction de 𝑉1,𝑝1,𝑝2,𝛾, 𝜌1 

 

Solution :   𝑉2
2 − 𝑉1

2 =
2𝛾

𝛾−1

𝑝1

𝜌1
(1 − (

𝑝2

𝑝1
)

𝛾−1

𝛾 ) 

 

 

• 3E - Ecoulement permanent d'un fluide réel (ou visqueux ; donc non parfait) de 𝜌 constante 

 

La conservation de l'énergie mécanique totale n'est pas vérifiée car il y a du frottement. 
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(remerciement F. Auclair) 

 

 

Du coup on considère un mini-cylindre de fluide : 
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La force de frottement par unité de masse, le long du cylindre de périmètre (perim), a pour module 
𝜏0

𝜌

𝑝𝑒𝑟𝑖𝑚

𝑑𝑆
  avec 𝜏0 la tension de cisaillement en Pascal. 

 

L'équation de Bernoulli devient l'équation de Bernoulli modifiée* : 

 

1

2
𝑉1

2 +
𝑝1

𝜌
+ 𝑔𝑧1 =

1

2
𝑉2

2 +
𝑝2

𝜌
+ 𝑔𝑧2 + ∫

𝜏0

𝜌

𝑝𝑒𝑟𝑖𝑚

𝑑𝑆
𝑑𝑠

2

1

 

 
1

2
𝑉1

2 +
𝑝1

𝜌
+ 𝑔𝑧1 =

1

2
𝑉2

2 +
𝑝2

𝜌
+ 𝑔𝑧2 + 𝑔ℎ𝑟 

 

le dernier terme peut s'écrire 𝑔ℎ𝑟 ou ℎ𝑟 est la perte de charge linéaire, due à l'énergie mécanique 

perdue, entre 1 et 2, sous forme de chaleur à cause du frottement. 

 

Exemple Une perte de charge linéaire (frottement) est de 20 cm par mètre de tuyau (0,2 en unité SI). 

Pour un tuyau de longueur L (ex L=10m), le terme ℎ𝑟 est égal à ℎ𝑟 = 0,2*L=0,2*10 = 2m de perte ; 

donc dans l'équation de Bernoulli modifiée, cela donnerait une perte 𝑔ℎ𝑟 de 19,62 𝑚2 𝑠2⁄ . 

 

Note *: Cette équation n’est plus réversible, au sens ou l’écoulement va de 1 à 2 ; avec le 

frottement ayant lieu entre 1 et 2 et le terme de frottement étant donc placé dans la partie 

« droite » de l’équation, c’est-à-dire du coté 2. 

 

 

 

4. Equation de l'énergie  (retour à Bernoulli classique avec toutes les hypothèses satisfaites 

pour que celle-ci soit applicable) 

 

L’équation de Bernoulli est généralisée d'une 

ligne de courant, avec vitesse V, à un tube de 

courant, c'est à dire au fluide passant par une 

surface dS limitée : 

𝛼 (
1

2
𝜌𝑉2) + (𝑝 + 𝜌𝑔𝑧)

= 𝐸𝑛𝑒𝑟𝑔𝑖𝑒 𝑚é𝑐𝑎𝑛𝑖𝑞𝑢𝑒 𝑡𝑜𝑡𝑎𝑙𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 

 

avec 𝛼 =
1

𝑆
∫

𝑉2𝑉𝑝

𝑈3
𝑑𝑆

𝑆
    facteur adimensionnel 

𝑉𝑝 est la composante de la vitesse orthogonale à 

la section dS du tube de courant 

𝑈 est la vitesse moyenne orthogonale dans la 

section dS et U = constante 
 

 

𝛼 peut prendre des valeurs entre 1 et 2 : 

 

a) 𝛼 proche de 2 = l'écoulement est laminaire (écoulement de Poiseuille) 

b) 𝛼 proche de 1.1 = l'écoulement est turbulent (fluide réel) 

c) 𝛼 proche de 1 = l'écoulement est unidimensionnel 

(profil de vitesse constant dans la section dS) ; cas d'un fluide parfait. 

 



 

A. PETRENKO                                                        MECANIQUE des FLUIDES (SNT4U21L) 

 

12 

a) cas laminaire        b) écoulement turbulent  c) cas fluide parfait 

 U=Vmax/2   ex U=0.8 Vmax      (V=Vp=U) 

 

 
 

 

 

Autre façon d’appréhender ces profils  

(en fonction de la relation entre la valeur moyenne U et Vmax) 

 

 
(Sources : res-nlp.univ-lemans.fr & gpip.cnam.fr) 

 

5. THM d'Euler des quantités de mouvement 

 

Hypothèses : 

l'écoulement est permanent 

l'écoulement est conservatif 

 

Ce théorème s'énonce : 

∑𝐹⃗ = ∫ 𝑉⃗⃗𝑑𝑄𝑚
𝑆𝑓𝑒𝑟𝑚é𝑒

 

 

Ce théorème est issu d'une transformation mathématique du principe fondamental de la dynamique 

∑𝐹⃗ = 𝑚𝑎⃗  de façon à énoncer l'accélération sous une forme pratique pour des applications type 

ingénieur (calcul de forces sur des conduites). 

 

Il s'applique sur un volume (vol) entouré par une surface fermée. 

 

rappel : le débit est  𝑑𝑄 = 𝑉⃗⃗ ⋅ 𝑛⃗⃗𝑑𝑆 avec 𝑛⃗⃗ vecteur unitaire sortant de cette surface. 

 

Le débit massique est défini par : 

𝑑𝑄𝑚 = 𝜌𝑑𝑄 = 𝜌𝑉⃗⃗ ⋅ 𝑛⃗⃗𝑑𝑆 

donc 𝑉⃗⃗𝑑𝑄𝑚est un débit de quantité de mouvement d’où le nom du théorème. 

 

Si dans une conduite, entre deux sections S1 et S2, les forces agissant sur le fluide sont : 

• force de masse 𝑓𝜌𝑣𝑜𝑙 
• forces de pression −𝑝1𝑆1𝑛1⃗⃗⃗⃗⃗et −𝑝2𝑆2𝑛2⃗⃗⃗⃗⃗ 

• forces de contact des parois de la conduite sur le fluide 𝑅⃗⃗ 

et que l'on fait l'hypothèse supplémentaire que  𝜌 est constant 
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alors le THM d'Euler des quantités de mouvement s'écrit:  

𝑄𝑚1𝑉1
⃗⃗ ⃗⃗ + 𝑄𝑚2𝑉2

⃗⃗ ⃗⃗ = 𝑅⃗⃗ + 𝑓𝜌𝑣𝑜𝑙 − 𝑝1𝑆1𝑛1⃗⃗⃗⃗⃗ − 𝑝2𝑆2𝑛2⃗⃗⃗⃗⃗ 
 

 

 

 

6. Equations d'Euler , de Navier-Stokes et RANS 

 

Rappel sur l'équation d'Euler 

(établie par Léonhard Euler en 1755) s'applique dans le cas d'un fluide parfait, 

c’est-à-dire un fluide non visqueux et sans conductivité thermique en écoulement laminaire 

 

𝜌
𝑑𝑉⃗⃗

dt
= −grad⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗𝑝 + 𝜌𝑓 

avec 

𝑑𝑉⃗⃗

𝑑𝑡
=

𝜕𝑉⃗⃗

𝜕𝑡
+ (𝑉⃗⃗ ⋅ 𝛻⃗⃗)𝑉⃗⃗ 

Si on s'occupe uniquement d'un champ de pesanteur 𝑓 = 𝑔⃗    (avec cette écriture vectorielle, on 

n’impose aucun choix de référentiel) 

 

alors :                 𝜌
𝑑𝑉⃗⃗⃗

dt
= −grad⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗𝑝 + 𝜌𝑔⃗ = −𝛻⃗⃗𝑝 + 𝜌𝑔⃗ 

 

Équation de Navier-Stokes nommé é d'apré s déux sciéntifiqués du XIXé sié clé, lé 
mathé maticién français, ingé niéur dés Ponts, Hénri Naviér (1785-1836 ; 
https://fr.wikipédia.org/wiki/Hénri_Naviér) ét lé physicién Géorgé Stokés (1819-1903 ; 
britanniqué né  én Irlandé ; https://fr.wikipédia.org/wiki/Géorgé_Gabriél_Stokés). 
 
Lé choix dé cés déux noms oubliant malhéuréusémént célui du mathé maticién ét physicién 
français Adhé mar Barré  dé Saint-Vénant (1797-1886 ; 
https://fr.wikipédia.org/wiki/Adhé mar_Barré _dé_Saint-Vénant), dont lé ro lé intérmé diairé a 
pourtant é té  tré s important. 
 
Lés é quations dé Naviér-Stokés s'appliquént pour dés fluidés visquéux (ré éls, non parfaits) : 

𝑑𝑉⃗⃗

𝑑𝑡
= −

1

𝜌
𝛻⃗⃗𝑝 + 𝑔⃗ + 𝜈𝛻2𝑉⃗⃗ 

 

rappels : 

– l'opérateur Laplacien peut s'écrire : 𝛥𝑉⃗⃗ = 𝛻2𝑉⃗⃗ ; 

– 𝜈 est la viscosité moléculaire cinématique (unité m2/s); 

 

Dans un référentiel tournant, des forces d’entraînement apparaissent (voir cours L3 Dynamique 

Océanique), l'équation devient : 
𝑑𝑉⃗⃗⃗

𝑑𝑡
= −

1

𝜌
𝛻⃗⃗𝑝 + 𝑔⃗ − 2𝛺⃗⃗ × 𝑉⃗⃗ + 𝜈𝛻2𝑉⃗⃗                                   (unité : accélération) 

 

Ou    𝜌
𝑑𝑉⃗⃗⃗

dt
= −grad⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗𝑝 + 𝜌𝑔⃗ − 2ρ𝛺⃗⃗ ∧ 𝑉⃗⃗ + 𝜇𝛥𝑉⃗⃗  (unité : forces par unité de volume) 

 

https://fr.wikipedia.org/wiki/George_Gabriel_Stokes
https://fr.wikipedia.org/wiki/Adhémar_Barré_
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rappels : 

– 𝜇 est la viscosité moléculaire dynamique (unité kg /m/s)  et 
𝜇

𝜌
= 𝜈 ; 

– Terme à gauche lié à la vitesse car hydrodynamique ; à droite, les 2 premiers termes (pression 

et pesanteur*) sont ceux de l’hydrostatique, le troisième terme de la partie de droite est la 

force de Coriolis avec 𝛺⃗⃗ le vecteur de rotation autour de l’axe terrestre et le quatrième est le 

terme du aux frottements.      (*voir L3, la pesanteur inclut une contribution d’une force 

d’entrainement) 

 

 

 

 

Équation de Reynolds (ou RANS- Reynolds Averaged Navier-Stokes equation) pérméttént dé 
préndré én compté cértains éfféts dus a  la turbuléncé, én postulant, sélon uné idé é dé Joséph 
Boussinésq, uné similitudé éntré la viscosité  molé culairé ét un coéfficiént appélé  viscosité  
turbulénté. 
 

La turbuléncé dé signé l'é tat dé l'é coulémént d'un fluidé, dans léquél la vitéssé pré sénté én tout 
point un caracté ré tourbillonnairé : tourbillons dont la taillé, la localisation ét l'oriéntation 
variént constammént. Lés é couléménts turbulénts sé caracté risént donc par uné apparéncé tré s 
dé sordonné é, un comportémént difficilémént pré visiblé ét la coéxisténcé dé nombréusés 
é chéllés spatialés ét témporéllés. Dé téls é couléménts apparaissént lorsqué la sourcé d'é nérgié 
ciné tiqué qui mét lé fluidé én mouvémént ést rélativémént inténsé dévant lés forcés dé viscosité  
qué lé fluidé opposé pour sé dé placér. A  l'invérsé, on appéllé laminairé lé caracté ré d'un 
é coulémént ré guliér. 
 
Si on fait plusiéurs fois uné mé mé éxpé riéncé pour mésurér la vitéssé, on n’obtiéndra pas lés 
mé més valéurs. Alors, pluto t qué dé réchérchér la vitéssé instantané é, obténué avéc lés 
é quations dé Naviérs-Stokés vués pré cé démmént, on chérché uné vitéssé lissé é dans lé témps, 
c'ést a  diré moyénné é sur uné pé riodé dé témps dé péndant du phé nomé né é tudié  ét on 
dé composé la vitéssé én uné partié moyénné ét un é cart a  la moyénné ; soit pour chaqué 
composanté dé la vitéssé : 
 

'u u u= +  
 

 
Fig. Expériences de Reynolds sur la turbulence en 1883 (sitelyceejdarc.org) 

 

En effet, dans ce cours, nous avons géré les écoulements comme si ils étaient laminaires (vue du haut) 

alors que les fluides géophysiques, tels que les masses d’eau océaniques,  se comportent comme sur 

la vue du bas : 
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Figure sur le nombre de Reynolds (sciencetonnante.wordpress.com) 

 
Dans l'é quation suivanté, la vitéssé 𝑣⃗  ést la partié moyénné dé la vitéssé ét 𝜈𝑡 est la viscosité 

turbulente, dépendante non pas seulement du fluide mais de l'écoulement (et des échelles des 

processus étudiés) : 

 

𝑑𝑣⃗

𝑑𝑡
= −

1

𝜌
𝛻⃗⃗𝑝 + 𝑔⃗ − 2𝛺⃗⃗ × 𝑣⃗ + 𝜈𝛻2𝑣⃗ + 𝜈𝑡𝛻2𝑣⃗ 

 

La démarche incluant la mise en place de ce dernier terme 𝜈𝑡𝛻2𝑣⃗ , appelée « fermeture de la 

turbulence » n’est qu’une possibilité empirique de résolution (une modélisation) des écoulements 

turbulents et non une « vraie » solution, au sens analytique. En effet, à l’heure actuelle, on n’arrive 

pas encore à résoudre l’équation RANS dans des milieux turbulents.  C’est d’ailleurs un des 7 

problèmes de l’an 2000 qui recevront une récompense du Cray Institute si résolu (voir article : 

https://people.mio.osupytheas.fr/~petrenko/TEACHING/SM22/Unicite_solution_Navier_Stokes.pd

f ; cette démonstration s’est avérée inexacte dont le prix est toujours en jeu). 

   

Depuis la moitié du XX siècle les 

océanographes se sont rendu compte que 

les mouvements océaniques ont en effet un 

comportement très turbulent. 

 

Voir la vidéo : 

Perpetual Ocean by NASA 

http://www.nasa.gov/topics/earth/features/p

erpetual-ocean.html 
 

mise en ligne en 2012 (modélisation de 

2005 à 2007) 

 

et pour la Méditerranée : Facebook 

Découverte du Vivant ; Courants marins 

vortex en Méditerranée sur 11 mois 

 

 
Sea surface current flows visualised by Nasa's Goddard Space Flight Cente 

 

https://people.mio.osupytheas.fr/~petrenko/TEACHING/SM22/Unicite_solution_Navier_Stokes.pdf
https://people.mio.osupytheas.fr/~petrenko/TEACHING/SM22/Unicite_solution_Navier_Stokes.pdf
http://www.nasa.gov/topics/earth/features/perpetual-ocean.html
http://www.nasa.gov/topics/earth/features/perpetual-ocean.html
http://svs.gsfc.nasa.gov/vis/a000000/a003900/a003912/index.html

