
Université d’Aix-Marseille 
Facultés des Sciences

Licence de Sciences de la Vie et de la Terre
Parcours Mer, 3ème année

 

Anne A. Petrenko
Andrea M. Doglioli

Baptiste Néel

Notes de Cours et Travaux Dirigés de

Dynamique des Océans 1

  

  

dernière révision 17 octobre 2025

1



2



Remerciements
Nous désirons remercier tous nos étudiants et nos collègues pour leur commentaires, questions,
corrections et suggestions.
En particulier, ces polycopies ont bénéficié des contributions de Nicolas Barrier, Nathalie Daniault,
Marion Fraysse, Nadia Pinardi, F.Mattioli et Gérard Copin-Montégut,  Katixa Lajaunie-Salla, Saïd
Benjeddou.

Petrenko, A. A.,Doglioli, A. M., , Néel, B. (2025),  Notes de Cours et Travaux Dirigés de Dynamique des
Océans 1,  Université d'Aix-Marseille, Marseille, France.
https://people.mio.osupytheas.fr/~petrenko/TEACHING/SM23/DynamiqueOceans1.pdf

Ce matériel est distribué selon la licence Créative Commons [http://creativecommons.org/] 

Vous êtes libres :
* de reproduire, distribuer et communiquer cette création au public
* de modifier cette création
Selon les conditions suivantes :
* Paternité. Vous devez citer le nom de l'auteur original de la manière indiquée par l'auteur de 
l'oeuvre ou le titulaire des droits qui vous confère cette autorisation (mais pas d'une manière qui
suggérerait qu'ils vous soutiennent ou approuvent votre utilisation de l'oeuvre).
* Pas d'Utilisation Commerciale. Vous n'avez pas le droit d'utiliser cette création à des fins 
commerciales.
* Partage des Conditions Initiales à l'Identique. Si vous modifiez, transformez ou adaptez cette 
création, vous n'avez le droit de distribuer la création qui en résulte que sous un contrat 
identique à celui-ci.

Cet ouvrage a été réalisé avec le logiciel https://www.libreoffice.org/ 

3

https://www.libreoffice.org/


Table des matières

Notes de Cours

Rappels
   Éléments de mathématique
   Symboles : les lettres grecques
   Lois du mouvement de Newton
   Mouvements dans un référentiel en rotation par rapport à un 
référentiel galiléen

1.Équations de l’hydrodynamique
   Lois de conservation
   Forces agissant sur le milieu marin
    Forces internes (Pesanteur,Force de pression)
    Force externes (Force génératrice de la marée, Force 

d'entraînement du vent
   Forces secondaires (Force de Coriolis, Force de frottement dues à la 

viscosité)
   Écoulement turbulent et équations de Reynolds
   Simplifications

2.Analyse des ordres de grandeur et nombres sans dimensions
   Analyses des ordres de grandeur des termes des équations de Reynolds
   Le nombre de Reynolds
   Nombres de Rossby et d'Ekman

3.Courants sans frottement
   Écoulement géostrophique
   Courant d’inertie

4.Les équations e.p.p. et la vorticité
   Les équation en eaux peu profondes
   La vorticité
   La conservation de la vorticité

Travaux Dirigés
- Pesanteur 
- Force de marée
- Équations d'Euler et de Navier-Stokes
- Décomposition de Reynolds et RANS
- Approximation de Boussinesq
- Force de Coriolis
- Analyse des ordres de grandeur
- Courant géostrophique barotrope : le Gulf Stream et  le Courant des 
Aiguilles
- Courant d’inertie : l’effet du Mistral dans le Golfe du Lion
- Méthode dynamique : estimer l’intensité du Courant Nord
- La conservation de la vorticité et l’intensification des courants de 
bord Ouest 

4



Bibliographie

Anderson J.D. Jr (2005), Ludwig Prandtl's Boundary Layer, Physics Today.
http://ccaunam.atmosfcu.unam.mx/jzavala/OceanoAtmosfera/Ludwing.pdf

Coiffier J. (2000), Un demi-siècle de prévision numérique du temps. La Météorologie, 30, 11-31.
http://hdl.handle.net/2042/36122

Copin-Montégut G., Le Courant Géostrophique
http://www.obs-vlfr.fr/Enseignement/enseignants/copin/Geostro.pdf

Daniault  N.  (2005),  Océanographie  Physique  pour  l'École  Navale.  Cours  en  ligne,
LPO - Université de Bretagne Occidentale, Brest.
http://stockage.univ-brest.fr/~daniault/oceano_physique.pdf

Fieux, M.  (2010, réédité en 2020 ;  et  version anglaise en 2017),   L’océan planétaire,  Editions
ENSTA (disponible à la BU Luminy)

Lynch  P.  &  De  Moor  G.  (2008)  Les  origines  de  la  prévision  numérique  du  temps  et  de  la
modélisation climatique. La Météorologie, 63, 14-24.
http://hdl.handle.net/2042/21887

De plus, une partie des formules et explications de ce document sont inspirées de
Mattioli F. (1995) Principi Fisici di Oceanografia e Meteorologia (en Italien)

Des références à des sites web sont explicitement indiquées.

5

http://hdl.handle.net/2042/21887
http://stockage.univ-brest.fr/~daniault/oceano_physique.pdf
http://www.obs-vlfr.fr/Enseignement/enseignants/copin/Geostro.pdf
http://hdl.handle.net/2042/36122
http://ccaunam.atmosfcu.unam.mx/jzavala/OceanoAtmosfera/Ludwing.pdf


6



Rappels

Éléments de mathématique (dans un référentiel cartésien)

Scalaire T , S ,ρ avec  T≡T (x , y , z , t )
                                           S≡S (x , y , z , t )
                                           ρ≡ρ(x , y , z , t )

Vecteur v⃗≡(u , v , w) avec  u≡u(x , y , z , t )
                                                    v≡v (x , y , z , t )
                                                    w≡w (x , y , z , t )

Dérivée totale
d
dx

F avec F≡F (x)  (autre notation d x F )

Dérivées partielles
∂
∂ x

F ∂
∂ y

F ∂
∂ z

F ∂
∂ t

F avec F≡F (x , y , z , t )  (autre notation ∂x F )

Opérateur Nabla ∇⃗≡( ∂
∂ x

, ∂
∂ y

, ∂
∂ z
)   (autre notation ∇ )

Gradient d’un scalaire ∇⃗ T≡(∂T
∂ x

,
∂T
∂ y

,
∂T
∂ z
) (autre notation ⃗grad T ) 

Divergence d’un vecteur ∇⃗⋅⃗v=∂u
∂ x
+ ∂ v
∂ y
+ ∂w
∂ z

(autre notation div d i v v⃗ ) NB :c’est un vecteur

Rotationnel d’un vecteur ∇⃗×v⃗=(∂ y w−∂z v ,∂z u−∂x w ,∂x v−∂ y u) (autre notation

∇⃗∧v⃗= i⃗ (∂ y w−∂z v)+ j⃗(∂zu−∂x w)+ k⃗ (∂x v−∂ y u) où i⃗≡(1,0 ,0) , j⃗≡(0 ,1 ,0) , k⃗≡(0 ,0 ,1)

ou encore autre notation r o t v⃗ NB :c’est un vecteur)

Gradient d’un vecteur ∇ v⃗=⟦ ∂x u ∂ y u ∂z u
∂x v ∂ y v ∂z v
∂x w ∂ y w ∂z w⟧ NB :c’est un tenseur

Dérivée Lagrangienne ou particulaire

d F
d t
=∂F
∂ t
+ v⃗⋅∇⃗ F=∂F

∂ t
+u
∂F
∂ x
+v
∂F
∂ y

+w
∂F
∂ z

 (autres notations
D F
D t

D t F d t F )
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Les symboles : les lettres grecques

1 Α α Alpha a
2 Β β Bêta b
3 Γ γ Gamma g
4 Δ δ Delta d
5 Ε ε Epsilon e
6 Ζ ζ Zêta z
7 Η η Êta h
8 Θ θ ϑ Thêta q
9 Ι ι Iota i

10 Κ κ Kappa k
11 Λ λ Lambda l
12 Μ μ Mu m
13 Ν ν Nu n
14 Ξ ξ Xi x
15 Ο ο Omicron o
16 Π π Pi p
17 Ρ ρ Rhô r
18 Σ σ ς Sigma s
19 Τ τ Tau t
20 Υ υ ϒ Upsilon u
21 Φ φ Phi j
22 Χ χ Khi c
23 Ψ ψ Psi y
24 Ω ω Oméga w

Volume massique

coeff.  de  variation  méridionale du  paramètre  de
Coriolis

accélération ; poids volumique

anomalie de volume

vorticité relative

surélévation

température potentielle

coeff. de viscosité (moléculaire) dynamique

coeff. de viscosité (moléculaire) cinématique

masse volumique

tenseur des contraintes visqueuses moléculaires

tenseur des contraintes visqueuses turbulentes

latitude / potentiel des vitesses

fonction de courant

vitesse angulaire de rotation de la Terre

Ὠκεανός = Okeanos, le grand fleuve ou de la mer entourant le disque de la Terre (par opposition à la Méditerranée),
d'origine inconnue. Personnifiée comme Oceanus, fils d'Ouranos et de Gaia et époux de Téthys. Dans les temps anciens,
lorsque les masses terrestres connues seulement étaient Eurasie et l'Afrique, l'océan était une rivière qui coulait sans fin
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autour d'eux. Jusqu'à c.1650, communément mer océan, traduction L. jument oceanum. Application aux masses d'eau a
commencé vers le 14 siècle.

Τηθύς = Téthys paléo-océan (et nom d’un navire de la flotte française) à ne pas confondre avec 
Θέτις = Thétis, nymphe marine, mère d'Achille. 

Γαῖα = Gaîa, la Terre

Ορανός = Ouranós, le Ciel
κόσμος=kósmos,  l’univers dans sa complexité, son ordre naturel et la beauté qu’on en dérive
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Les lois du mouvement de Newton 

1ère Loi de Newton ou principe d’inertie

Dans un référentiel  galiléen ou référentiel inertiel, toute particule isolée, i.e., éloignée de tout objet matériel,
reste  au  repos  si  elle  est  initialement  au  repos,  ou  décrit  un  mouvement  rectiligne  uniforme  si  son
accélération est nulle.

γ⃗=
d V⃗
d t =0 ⇒ V⃗=

d X⃗
d t =V⃗ o ⇒ X⃗=V⃗ o t+ X⃗ o

NB : En physique classique, un référentiel galiléen est définit comme un référentiel pour lequel l'espace est
homogène (tous les points sont équivalents) et isotrope (toutes les directions de l'espace sont équivalentes), et
le  temps  uniforme  (tous  les  instants  sont  équivalents).  On  peut  aussi  dire  qu’il  s’agit  d’un  référentiel
stationnaire ou en mouvement rectiligne uniforme.

2ème Loi de Newton ou principe fondamental de la dynamique

Dans un référentiel  galiléen,  il  existe  une relation de proportionnalité entre  l’accélération  γ⃗  d’une

particule et la force F⃗  , ou mieux à l’ensemble des forces, à laquelle elle est soumise :

F⃗=m γ⃗         ou             ∑i
F⃗ i=m γ⃗

où m est un coefficient positif caractéristique de la particule, appelé masse du point matériel.

3ème Loi de newton ou principe de l’action et de la réaction

Dans un référentiel galiléen, l’action mutuelle de deux particules P1 et P2 l’une sur l’autre se traduit par une 

force F⃗1 appliquée à la première particule et une force F⃗ 2 associée à la seconde. 

Les deux forces sont :
- portées par la droite P1-P2, qui joint les deux particules
- égales en module mais de sens opposé :

F⃗1=−F⃗ 2

Mouvements dans un référentiel en rotation par rapport à un référentiel galiléen

Dans un référentiel galiléen  R=(O , I⃗ , J⃗ , K⃗ ) , en suivant une particule fluide de masse m, on a :

F⃗ A=m γ⃗ A

où γ⃗ A est l’accélération absolue de la particule P

et F⃗ A est l’ensemble des forces qui agissent sur P, dîtes forces absolues.
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Dans un référentiel en rotation par rapport à un référentiel  galiléen (i.e.  dans un référentiel non absolu)

R ’=(O ' , i⃗ , j⃗ , k⃗ ) , la loi de composition des mouvements permet de calculer accélération absolue (i.e.

l'accélération de m dans R de la façon suivante :

γ⃗ A= γ⃗r+ γ⃗E+ γ⃗C

avec

γ⃗ r   l’accélération relative, i.e. l'accélération de la particule dans R' 

γ⃗ E  l'accélération d’entraînement, i.e. l'accélération qu'aurait la particule dans R si elle était fixe dans R'

γ⃗C  l'accélération de Coriolis, i.e. l’accéleration due au mouvement non linéaire du référentiel R’ lui-

               même.

Donc les forces absolues sont:

F⃗A=m( γ⃗r+γ⃗E+γ⃗C) = F⃗ r+m( γ⃗E+γ⃗C)
Les forces relatives sont :

F⃗r = F⃗A−m γ⃗E−m γ⃗C

Puisque, par définition le forces relatives sont aussi égales à la somme des forces en jeu : 

F⃗r = F⃗A+ F⃗E+ F⃗C

on en découle que, les forces d’entraînement et de Coriolis sont respectivement égales à

F⃗E=−m γ⃗E et F⃗C=−m γ⃗C .

Les forces d’entraînement et de Coriolis sont appelées aussi pseudo-forces 

F⃗ pseudo = F⃗ E+ F⃗C

ou forces fictives, car elles ne découlent pas de véritables interactions entre objets, mais sont seulement la
conséquence d'un choix de référentiel. Elles sont introduites pour généraliser la deuxième lois de Newton
aux référentiels non inertiels.

Figure tirée de FEMTO - Cours de mécanique classique. ©J.ROUSSEL - article sous licence Creative Commons.
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1. Équations de l’hydrodynamique

1.1. Lois de conservation

Les lois qui régissent les mouvements de l’océan sont les lois de conservation de la masse, de la
chaleur, du sel et de la quantité de mouvement.

La loi de conservation d’une quantité générique de densité λ s’écrit 

∂λ
∂ t

+ ∇⋅(λ v⃗ ) = ξ

avec ξ à  representer  le  terme  des  sources  et  des  puits  de λ et v⃗≡(u , v , w) vitesse  des
particules d’eau.

La loi de conservation de la masse (ou équation de continuité) s’obtient en remplaçant λ par la
masse volumique1 ρ et on considerant comme nul le terme sources/puits :

∂ρ
∂ t

+ ∇⋅(ρ v⃗) = 0

Si on ajoute la condition d'incompressibilité qui dit que la masse volumique de chaque particule
océanique ne varie pas le long de sa trajectoire2 :

dρ
d t

=
∂ρ
∂ t
+( v⃗⋅∇)ρ = 0

l'équation de la continuité se simplifie et devient :

∇⋅v = 0 i.e. 
∂u
∂ x

∂ v
∂ y


∂w
∂ z

= 0 .

La loi de conservation de la chaleur s’obtient en remplaçant λ par ρT avec T température de
l’eau de mer3  et on considérant le terme sources/puits égale au réchauffement du à la radiation
solaire χ  :

∂(ρT )
∂ t

+ ∇⋅(ρT v⃗ ) = χ .

Si on applique la loi de conservation de la masse, on peut reécrire cette loi sous la forme :

d T
d t

= ∂T
∂ t

+ v⃗⋅∇ T = χ
ρ .

1 En océanographie, la masse volumique se mesure habituellement en [kg m-3].
2 Il faut noter que la condition d’incompressibilité n’impose pas que que la masse volumique soit constante dans le
temps et dans l’espace, parce que sinon on serait obligé à considérer l’océan comme perpétuellement homogène !
3 En océanographie, la température se mesure habituellement en [oC] .
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La loi de conservation du sel s’obtient en remplaçant λ par ρS avec S salinité4 et on
considérant le terme sources/puits égale au bilan entre évaporation E, pluie P et apports des rivières

R :
∂(ρS)
∂ t

+ ∇⋅(ρS v⃗ ) = E−P−R .

Si on applique la loi de conservation de la masse, on peut reécrire cette loi sous la forme :

d S
d t

= ∂ S
∂ t

+ v⃗⋅∇ S =
(E−P−R)

ρ .

Enfin, en remplaçant λ par ρ v⃗ quantité de mouvement on obtient la loi de conservation de la
quantité de mouvement où le terme sources/puits représente le bilan des forces qui agissent sur
chaque particule océanique :

∂(ρ v⃗ )
∂ t

+ ∇ (ρ v⃗⋅⃗v) = F⃗ .

Si on applique la condition d’incompressibilité on peut reécrire :

d v⃗
d t

= ∂ v⃗
∂ t

+ v⃗⋅∇ v⃗ = F⃗
ρ .

Cette  formulation  mets  en  évidence  que  cette  équation  exprime  la  deuxième  loi  de  Newton
appliquée à une particule de volume unitaire.
Cette équation est  connue, ou bien -étant  v  un vecteur à trois composantes- ces équations sont
connues sous différents noms :

-  équations d’Euler, quand décrivent les mouvement des fluides parfaits avec viscosité nulle, en
prenant donc en considération dans le bilan des forces la force de la pression p≡p(x , y , z )  et la
force de gravité g⃗≡(0,0, g)  : 

∂ v⃗
∂ t

+ v⃗⋅∇ v⃗ = −
1
ρ ∇ p + g⃗

-  équations de Navier-Stokes (d'après deux physiciens du XIXe siècle, Claude Navier et George
Stokes), quand décrivent les mouvements des fluides réels avec viscosité non nulle, en prenant donc
en considération dans le bilan des forces aussi la force due aux contraintes visqueuses, représentées
par le tenseur σ  :

∂ v⃗
∂ t

+ v⃗⋅∇ v⃗ = −1
ρ ∇ p + g⃗ − 1

ρ ∇⋅σ

-  RANS equations, acronyme anglais pour Reynolds-Averaged Navier-Stokes  (d'après Osborn
Reynold, 1842-1912, mathématicien spécialiste de la turbulence) ; elles décrivent les mouvements
des fluides réels en écoulement turbulent, en considerant une vitesse moyennée sur une periode de

4 En océanographie, la salinité se mesure habituellement en [gr kg-1]
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temps suffisamment longue pour s’affranchir de la variabilité due à la turbulence et en prenant
compte ainsi dans le bilan des forces la force due aux contraintes visqueuses dues à la turbulence,
représentées par le tenseur τ  :

∂ v⃗
∂ t

+ v⃗⋅∇ v⃗ = −1
ρ ∇ p + g⃗ − 1

ρ ∇⋅σ − 1
ρ ∇⋅τ

Afin d’appliquer la lois de conservation de la quantité de mouvement à la dynamique des océans
(ou de l’atmosphère) on choisi un référentiel terrestre local où les composantes de la vitesse v⃗
sont : u vitesse zonale (ouest – est, positive vers l’est), v vitesse méridienne (sud-nord, positive vers
le nord) et w vitesse verticale (positive vers le zénith). Étant ce type de référentiel non inertiel parce
que  la  Terre  tourne  avec  une  vitesse  angulaire Ω⃗ ,  il  faut  ajouter  une  dernier  terme  à  nos
équations,  celui  de  la  force  de  Coriolis  (habituellement  positionné  avant  les  contraintes
visqueuses) :

∂ v⃗
∂ t

+ v⃗⋅∇ v⃗ = −1
ρ ∇ p + g⃗ − 2Ω⃗× v⃗ − 1

ρ ∇⋅σ − 1
ρ ∇⋅τ

L’ensemble des 4 lois de conservation donne un système de 6 équations pour 7 inconnues ( ρ , T,
S, u, v, w et P), donc pour fermer le système on ajoute l’équation d’etat de l’eau de mer TEOS10
(voir cours d’Introduction à l’Océanographie du L2).
Ces équations sont des équations différentielles non-linéaires très compliquées à résoudre. On a des
solutions analytiques seulement en apportant des très fortes simplifications (voir Chapitres 3, 4 et
5). Partiellement simplifiées et discrétisées, elles peuvent être résolues par simulation numérique
(voir Chapitre 6). 

Dans la suite de ce chapitre on verra dans le détail chacune des forces qui apparaissent dans le terme
à  droite  de  l’équation  et  son  expression  mathématique  selon  les  différentes  approximations
appliquées.

1.2 Forces agissant sur le milieu marin

Différentes forces s'exercent :
les forces internes au fluide,
- la force de pression : elle est dirigée des hautes pressions vers les basses pressions ;
- la force de pesanteur (gravité + force d’entraînement axifuge, voir équations en référentiel non
inertiel)  :  elle  ne s’exerce que dans la  direction verticale et  ne peut  pas  accélérer  les courants
horizontalement. Elle ne joue un rôle important que pour les mouvements verticaux, par exemple
lors des phénomènes de convection. 
les forces externes,
- la force génératrice de la marée
- la force d’entraînement due au vent
- les forces liées à la pente de la surface libre (// gradients de pression)
les forces secondaires
- la force de Coriolis liée à la rotation de la Terre s’exerce perpendiculairement au mouvement et est
dirigée sur la droite du mouvement dans l’hémisphère Nord
-  les  forces  de  frottement  dues  à  la  viscosité  (la  viscosité  mesure  la  résistance  d’un  fluide  à
l’écoulement)
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1.2.1 Force de pression
Voir cours SM22 : La résultante des forces de pression (p) qui s’exerce sur une « particule 
élémentaire » de fluide de volume dv est :

F⃗=−(∇⃗ p)dv

1.2.2 Champ de pesanteur (gravitation+ force axifuge)

Toute particule de masse dm est soumise à une force de pesanteur : d F⃗=dm⋅⃗g  résultante de :

- la force de gravitation dm g⃗ ' due à l’attraction terrestre

- la force axifuge dm g⃗ ' '  due à la rotation de la terre

Attraction terrestre : 

g⃗' est dirigée du point d’observation vers le centre de la Terre et vaut :

g '=
GM

r2

où G =  6,67 10-11 Nm2kg-2 (ou m3s-2kg-1)  - Constante de Gravitation
M = 5,973 6×1024 kg  - Masse de la Terre
r = distance au centre de la Terre ( rayon de la terre en océanographie = 6370 km)

Force axifuge :

g⃗ ''=F⃗e=−Ω⃗∧( Ω⃗∧T⃗M )

Si u⃗ est le vecteur unitaire passant par le point d’observation , perpendiculaire à l’axe des pôles
et dirigé vers l’extérieur de la Terre. Si  est la latitude en ce point, cette force d’entraînement peut
s’écrire :

g⃗ ' '=Ω2 r cosϕ u⃗

g’’ est maximum à l’équateur où il vaut 0,034 ms-2.
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Remarques     :  

* la droite colinéaire avec g⃗  définit la verticale du lieu ; c’est la direction du fil à plomb.
* lorsque l’on descend en dessous du niveau de la mer, la valeur de g augmente car g' augmente
quand  R  diminue.  Cependant,  pour  ce  cours,  en  raison  de  la  faible  profondeur  des  océans
relativement au rayon terrestre, on fera quand même l’hypothèse que g est une constante égale à
9,81 m s-2.

1.2.3 Force génératrice de la marée
On considère que seuls la Lune et le Soleil ont une influence sur la Terre (le Soleil a une très grande
masse et la Lune est proche de la Terre). Les autres planètes ou étoiles qui entourent la Terre sont
trop éloignées ou de masses trop faibles pour être prises en considération. Les océans sont soumis à
deux forces opposées : 
-  l’attraction gravitationnelle, dont l'intensité dépend de la distance à l'astre (Lune ou Soleil) : plus
un point est proche de l'astre, plus l'attraction est forte.
-  la force axifuge sur la surface de la terre due à la rotation du système Terre-Lune autour de son
barycentre.  Elle ett constante en point de la surface.
NB: La force axifuge est une force fictive qui apparaît dans les systèmes non inertiels (ici on est en
rotation) due au fait que quand une masse dans son mouvement ne suit pas une trajectoire rectiligne,
il faut une force fictive pour en expliquer la trajectoire, tout en respectant le Ier principe de Newton
(ou principe d'inertie).  
Pour la Terre en rotation autour du centre de gravité du système Terre-Lune, cette force au centre
de  la  Terre aura  la  même  intensité,  mais  de  direction  opposée,  que  la  force  d'attraction
gravitationnelle de la Lune, qui fait que les deux corps en rotation ne s'éloignent pas.
Par contre sur la surface de la Terre, comme l'attraction gravitationnelle n'est pas la même suivant
ou l'on se trouve, c'est la différence entre cette force gravitationnelle variable et la force axifuge
constante  qui crée la force de marée.

 
Schéma du système Terre-Lune 

La résultante des deux forces (en noir) dépend donc de sa position sur la Terre, elle est :
- nulle au centre de la Terre (point O) 
- dirigée vers la Lune au zénith (point Z) 
- dirigée à l'opposée de la Lune au nadir (point N) 
- dirigée plus ou moins vers le centre de la Terre pour les points situés perpendiculairement à l'axe
ZN. 

Lorsque la force résultante est dirigée vers le centre de la Terre, la surface des océans a tendance à
baisser créant une basse-mer (BM) et à l'inverse lorsque la force est dirigée vers le ciel (au zénith et
au nadir) la surface des océans à tendance à monter créant une pleine-mer (PM).
Les  forces en jeu sont  extrêmement faibles et  induisent  des  variations  de niveau généralement
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inférieures au mètre dès que l'on s'éloigne des continents. A l'approche des côtes, l'onde de marée
peut être considérablement amplifiée par la faible profondeur des eaux et le marnage peut parfois
dépasser 10 mètres (17 m en baie de Fundy au Canada et 14.50 m à Granville en Normandie).
Si l'océan était en équilibre avec la force génératrice de la marée, sa surface prendrait la forme d'une
ellipse de révolution dont le grand axe serait dirigé vers l'astre. Ce phénomène a reçu le nom de
marée statique. 

En réalité, la Terre tourne sur elle-même en un jour sidéral. Donc, dans un sytème idéal Terre-Lune, 
quand la lune est placée dans le plan équatorial de la Terre, le résultat est une marée semi-diurne.

De façon très simplifiée, si la lune n’est plus dans le plan équatorial (tilt de l’axe de la Terre par 
rapport au plan solaire), une marée diurne peut être générée (schéma au tableau).  Celles-ci se 
produisent dans le golfe du Mexique, la mer d'Okhotsk, la mer de Chine méridionale, la partie nord-
ouest du golfe de Thaïlande et dans la mer de Java.

Dans la réalité, il y a des continents, les ondes de marée se structurent autour de points 
amphidromiques*.  Le résultat est complexe.  Il y a 4 cas principaux : marée semi-diurne, marée 
diurne , marée mixte, marée quasi inexistante (marée microtidale comme dans une bonne partie 
de la Méditerranée).

Cependant, les forces en jeu sont extrêmement faibles et induisent des variations de niveau 
généralement inférieures au mètre dès que l'on s'éloigne des continents. A l'approche des côtes, 
l'onde de marée peut être considérablement amplifiée par la faible profondeur des eaux et le 
marnage peut parfois dépasser 10 mètres (17 m en baie de Fundy au Canada et 14.50 m à Granville 
en Normandie). 

Si seulement la marée semi-diurne est représentée, voici ce que cela donne au niveau mondial :

 Courtesy NASA

*Un point amphidromique est une zone où l'amplitude de la marée est proche de zéro. Les points 
amphidromiques sont dus aux phénomènes de résonance qui se produisent dans certains bassins 

17



océaniques. L'onde de marée de ces bassins tourne autour d'une zone où l'onde de marée est 
stationnaire : le point amphidromique. 

Dans la réalité, la marée est bien plus compliquée, et elle est très bien modélisée en prenant en 
compte non seulement la lune mais le soleil et les autres astres.

Explication supplémentaire pour le système Terre-Lune- Soleil

La marée lunaire est plus que deux fois plus importante que celle générée par le soleil du fait de la 
proximité de la lune, compensant sa petite taille.

Si on rajoute le soleil, on a une modulation de la marée :  
- marée de vive eau durant les phases de nouvelle et de pleine Lune appelées syzygies, avec un fort 
marnage quand les trois astres (Terre Lune et Soleil) sont quasi alignés,
- marée de morte eau aux premier et dernier quartiers.

Les marées de vive eau ont donc lieu tous les ~15 jours, ~idem pour les marées de morte eau. En 
réalite, les vives-eaux et mortes-eaux interviennent avec un retard par rapport aux syzygies et 
quadrature: c'est l'âge de la marée. 

http://astarus.free.fr/les_marees__un_phenomene_g.htm

On peut ajouter une modulation annuelle compte tenu de la position de la terre dans sa rotation 
autour du soleil.  Lors des équinoxes (printemps et automne), le Soleil exerce une attraction plus 
forte sur la Terre que le reste de l'année, en raison de l'alignement entre le soleil et l'équateur. Par 
conséquent, la surface de l'eau est plus fortement attirée par le Soleil, ce qui amplifie les marées, on 
parle alors de grandes marées.

1.2.4 Force d’entraînement du vent (rigoureusement : tension)
Le vent  soufflant  à  la  surface  de l’eau exerce  sur  la  pellicule  d’eau superficielle  une force de
frottement qui dépend de la densité de l’air, la vitesse du vent, de la « rugosité » de la surface de la
mer (plus ou moins lisse),  de la stratification thermique au voisinage de l’interface (stabilité ou
instabilité des masses d’air entraînant une turbulence accrue) et autres causes encore.
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Dès 1905, Ekman avait établi qu’une formule, fondée sur des conditions de « dimensions » (voir 
chapitre suivant), convenait pour une gamme étendue de vitesses :

F⃗=k ρair v⃗ w|v⃗w|
avec v⃗w  vitesse du vent. Plus rigoureusement, cette formule n’est pas en unité de force [kg.m.s-2]
mais en unité de [kg.m-1.s-2] ; en fait c’est une tension d’entraînement du au vent, qui est une
force par unité de surface sur laquelle s’applique le vent.

Le coefficient k dépend de l’intensité du vent et de la hauteur au dessus de l'eau. Généralement, par
convention, on se réfère à la vitesse du vent à 10m au-dessus du niveau de l’eau.
L’essentiel  de  la  circulation  superficielle  est  due  au  vent ;  on  conçoit  l’intérêt  d’une  étroite
collaboration entre météorologistes et océanographes.
Le mouvement provoqué par le vent initialement cantonné à la couche superficielle, se propage vers
le bas par viscosité et turbulence.

1.2.5  Force de Coriolis

La  force  de  Coriolis  est  liée  à  la  rotation  de  la  Terre ;  elle  s’exerce  perpendiculairement  au
mouvement et est dirigée sur la droite du mouvement dans l’hémisphère Nord. 

L'expression des composantes de la force de Coriolis par unité de masse dans un repère terrestre
local  (axes liés à la Terre):

sur Ox (vers l'Est) +2Ω v sin ϕ −2Ωw cos ϕ
sur Oy (vers le Nord) −2Ωu sin ϕ
sur Oz (vers le zénith) +2Ωu cosϕ 
avec   vecteur rotation instantanée du référentiel terrestre (i.e. rotation de la terre),   latitude au
point d’observation/étude, et u, v et w composantes du vecteur vitesse.
Rappel : La terre effectue un tour complet (2 radians) vers l’est, en un jour sidéral, soit  86164
secondes (et non 24*3600s = 86 400s). On a donc : =0,729 10 –4 rad/s.

Les valeurs numériques montrent que la composante verticale (selon Oz) de la force de Coriolis est
négligeable devant la pesanteur. On peut en outre négliger généralement les vitesses verticales (w)
devant les vitesses horizontales (u et v).
Ces  approximations  w ≪ u , v et  2 cosu ≪ g  sont  dites  «approximation  de
mouvements  quasi-horizontaux » de telle sorte que les composantes de la force de Coriolis par
unité de masse s'écrivent simplement :
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sur O'x' (vers l'Est) : +2Ω v sin ϕ = + f v
sur O'y' (vers le Nord) : −2Ωu sin ϕ = −f u
sur O'z' (vers le zénith) :   0

On pose f = 2sin ;f est appelé facteur de Coriolis.
C’est un scalaire, à ne pas confondre avec la force de Coriolis qui est bien evidemment un vecteur.

1.2.6  Forces de frottement dues à la viscosité et équations de Navier-Stokes

La viscosité (ou frottement interne) est une propriété commune à tous les fluides réels (c'est à dire
« non parfaits »), qui tend à s’opposer aux irrégularités de vitesse dans une masse de fluide en
mouvement.
La viscosité mesure la résistance d’un fluide à l’écoulement. Elle est due aux frottements entre les
particules  fluides  en  mouvement.  Les  forces  de  frottement  par  unité  de  surface  sont  appelées
tensions de frottement, ou de cisaillement. Ces forces sont tangentielles, par opposition aux forces
de pression qui sont normales aux surfaces considérées.
Parmi  les  forces  extérieures,  on  a  signalé  l’action  du  vent  sur  la  couche  superficielle.  Ce
mouvement va, par viscosité, se transmettre aux couches sous-jacentes de l’eau. 

Supposons  que  le  mouvement  se  fasse
rigoureusement  par  tranches  planes,  par
exemple, horizontales, séparées d'une distance
infinitésimale  dz et animées de vitesses dans
la même direction mais inégales en grandeur
et  ne  dépendant  que  de  z.  On  écrit
 xz= xz  z 

la  contrainte  tangentielle  dans  la  direction  x
(indiquée par le premier indice) générée par la
viscosité entre  les couches superposées sur la
verticale (deuxième indice) . 

Par  le  principe  d'action et  réaction,  la  force qui  s'exerce  sur  la  couche inférieure est  égale  en
intensité et opposée en direction par rapport à la force qui s'exerce sur la couche supérieure. En
considérant  la  couche centrée  à  la  profondeur  z,  la  contrainte  visqueuse exercée  par  la  couche
supérieure  sera   xz= xz  zdz /2i avec i⃗ vecteur  unitaire  en direction  x,  tandis  que  celle
exercée par la couche inférieure sera − xz  z−dz /2i .  Le signe positif indique que la couche
supérieure tend à entraîner la couche de référence vers les  x   positifs et celle inférieure tend à la
freiner . 

Il faut noter aussi que, bien que la couche de référence soit sujette à un couple de forces, elle ne
tourne pas car elle est bloquée dans sa position par les autres couches qui l'entourent .

Avec le début du développement de Taylor d’une fonction, la force visqueuse par unité de volume
qui agit sur la couche dans la direction i s'écrit :

ρ F⃗ v i⃗=
∂σ xz

∂ z
i⃗ .
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De quoi  dépend  la  contrainte  visqueuse  xz ?  L'hypothèse  simple,  formulée  par  Newton,  est
qu'elle est proportionnelle au cisaillement de la vitesse (en anglais shear) :

 xz=
∂u
∂ z .

avec une constante de proportionnalité  appelée viscosité moléculaire dynamique (avec unités
kg m-1 s-1  ou Pa s),  à estimer empiriquement .  La science des fluides non newtoniens s'appelle la
rhéologie.
La suite est donc valable pour les fluides dits newtoniens.

Finalement, si on remplace σ xz dans la première équation :

F⃗ v i⃗ =
μ
ρ
∂2u
∂ z2 i⃗ = ν ∂

2 u
∂ z2 i⃗

avec  appelée viscosité moléculaire cinématique (avec unités m² s-1 ).
Pour préciser les forces de frottement dans le cas d'un écoulement tridimensionnel il faut prendre en
compte les trois composantes de la force de frottement et,  du fait qu'elles agissent sur les trois
directions x, y et z, cela conduit à introduire le tenseur des contraintes

σ = ⟦σ xx σ xy σ xz
σ yx σ yy σ yz
σ zx σ zy σ zz

⟧ .

Les éléments sur la diagonale  ii correspondent
aux contraintes normales à la surface dS, donc à
une force de sur-pression qui s’ajoute à cause de
la viscosité. 

Les  éléments  hors  de  la  diagonale  ij

correspondent  aux contraintes  tangentielles,  de
frottement ou de cisaillement.

Si de nouveau on utilise l'hypothèse de Newton on peut calculer les éléments du tenseur de la façon
suivante: 

σ = ⟦μ
∂u
∂ x

μ ∂u
∂ y

μ ∂u
∂ z

μ ∂ v
∂ x

μ ∂ v
∂ y

μ ∂ v
∂ z

μ ∂w
∂ x

μ ∂w
∂ y

μ ∂w
∂ z
⟧ ,
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Comme dans chaque direction, il y a trois termes,  la notation vectorielle pour la force visqueuse
devient :

F⃗ v = ν ∇⃗ 2 v⃗ = νΔ v⃗

Il est très important de se rappeler que cette notation est  valable  exclusivement  pour un fluide
newtonien,  i.e.  avec  viscosité  linéaire  proportionnelle  au  cisaillement  de  la  vitesse,  et
incompressible.

Dans le cas de ces approximations, tout à fait raisonnables pour l’océan, les équations dites de
Navier-Stokes s'écrivent sous forme vectorielle

d v⃗
d t

= −1
ρ∇ p + g⃗ − 2 Ω⃗×v⃗ + ν∇ 2 v⃗

Toujours dans le repère terrestre local (non galiléen) utilisé jusqu'à présent, cette équation peut
s'écrire sous forme développée ; ce sont les équations de Navier-Stokes :

∂u
∂ t
u

∂u
∂ x
v

∂ u
∂ y
w

∂ u
∂ z

= − 1

∂ p
∂ x

 f v  [∂2 u
∂ x2

∂2 u
∂ y2

∂2u
∂ z2 ]

∂ v
∂ t
u

∂ v
∂ x
v

∂ v
∂ y
w

∂ v
∂ z

= −1

∂ p
∂ y

− f u   [∂2 v
∂ x2

∂2 v
∂ y 2

∂2 v
∂ z2 ]

  
∂w
∂ t
u

∂w
∂ x
v

∂w
∂ y

w
∂w
∂ z

= − 1

∂ p
∂ z

− g   [∂2 w
∂ x2 

∂2w
∂ y2

∂2 w
∂ z2 ]

Par convention, on définit comme « équations de l'hydrodynamique » le système composé des trois
équations  précédentes  (équations  de  Navier-Stokes)  et  de  l’équation  de  continuité  en  condition
d’incompressibilité du fluide, i.e.

∇⃗⋅⃗v = 0 i.e. 
∂u
∂ x
+ ∂ v
∂ y
+ ∂w
∂ z

= 0

Il y a alors 5 inconnues : les trois composantes de la vitesse u,  v, et  w, la pression p  et la masse
volumique  et il y a 5 équations à résoudre : le système est donc fermé. 
Dans la pratique de la modélisation de la circulation océanique, en plus de ces variables, il  est
possible de déterminer la température et la salinité au sein du fluide avec des équations de transport.

Les forces externes n’interviennent pas directement dans les équations. La force due à la pente de
surface libre intervient au niveau du gradient de pression.  La force génératrice de la marée est
rarement introduite dans les modèles. On utilise plutôt l’impact que la marée a sur l’élévation de
surface  libre,  i.e.  une  variation  temporelle,  somme de  plusieurs  ondes  sinusoïdales.  Quant  aux
forces de frottements dues au vent, elles sont prises en compte dans le terme de frottement, au
niveau de la surface libre.

Remarque
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Une autre classification des forces peut exister, en correspondance avec ce qui a été fait dans la section de rappels.
Les forces relatives dans un repère local non galiléen sont composées: des forces absolues (du repère galiléen; i.e.
frottement, pression et gravitation), de la force d’entraînement centrifuge et de la force de Coriolis.

Forces relatives = Forces absolues    + Pseudo-forces

Forces absolues    +

frottement pression gravitation

Force d' entraînement 
axifuge

                    pesanteur

+ Force de 

     Coriolis

secondaire interne interne interne secondaire

En effet, quand on parle de pesanteur, on inclut la gravité, correspondant à une composante des forces absolues, et la
force  d’entraînement.  Quant  à  la  force  de  Coriolis,  elle  est  désignée  comme  une  force  secondaire  dans  la
classification de la présente section.
+ voir note précédente sur les forces externes.

1.3 Écoulement turbulent et équations de Reynolds (voir détails en TD)

La turbulence désigne l'état de l'écoulement d'un fluide, dans lequel la vitesse présente en tout point
un  caractère  tourbillonnaire :  tourbillons  dont  la  taille,  la  localisation  et  l'orientation  varient
constamment. Les écoulements turbulents se caractérisent donc par une apparence très désordonnée,
un comportement  difficilement  prévisible  et  la  coexistence  de  nombreuses  échelles  spatiales  et
temporelles. De tels écoulements apparaissent lorsque la source d'énergie cinétique qui met le fluide
en mouvement est relativement intense devant les forces de viscosité que le fluide oppose pour se
déplacer. À l'inverse, on appelle laminaire le caractère d'un écoulement régulier. 
Si on fait plusieurs fois une même expérience pour mesurer la vitesse, on n’obtiendra pas les mêmes
valeurs.  Alors,  plutôt que  de  rechercher  la  vitesse  instantanée,  obtenue  avec  les  équations  de
Naviers-Stokes  vues  précédemment,  on  cherche  une  vitesse  lissée  dans  le  temps,  c'est  à  dire
moyennée sur une période de temps dépendant du phénomène étudié et on décompose la vitesse en
une partie moyenne et un écart à la moyenne : 

 u=u+u '       avec u'=0

Cette technique s’appelle décomposition de Reynolds. 

Pour l’équation de continuité dans le cadre de l'hypothèse d'incompressibilité, on a :
∂(u+u' )
∂ x

+
∂(v+v ')
∂ y

+
∂(w+w ' )
∂ z

= 0  .

On obtient pour les valeurs moyennes et pour les écarts :
∂u
∂ x

∂ v
∂ y

∂w
∂ z
=0

    

∂u'
∂ x

+ ∂ v '
∂ y

+ ∂w '
∂ z

=0  (par différence u−u )

Pour les équations de Navier-Stokes :
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∂ uu' 
∂ t

uu' 
∂ uu' 
∂x

vv ' 
∂ uu' 
∂ y

ww ' 
∂uu ' 
∂ z

= −1

∂ p
∂ x

 f vv '    [∂2 uu' 
∂x2


∂2 uu' 
∂ y2


∂2 uu' 
∂ z2 ]

∂ vv ' 
∂ t

uu' 
∂ vv ' 
∂ x

vv ' 
∂ vv ' 
∂ y

ww ' 
∂ vv ' 
∂ z

= −1

∂ p
∂ y

− f uu'    [∂2 vv ' 
∂ x2 

∂2vv ' 
∂ y 2 

∂2 vv ' 
∂ z2 ]

∂ ww ' 
∂ t

uu ' 
∂ww ' 
∂ x

vv ' 
∂ ww ' 
∂ y

ww' 
∂ ww ' 

∂ z
= −1


∂ p
∂ z

− g   [∂2 ww ' 
∂x2


∂2ww ' 
∂ y2


∂2 ww ' 

∂ z2 ]
En TD, il sera démontré qu'en appliquant l’hypothèse que la moyenne des écarts est nulle on obtient

u
∂u
∂ x

= u
∂ u
∂ x

+ u '
∂u '
∂ x

et  de même pour  les  autres  composante  y et  z.  Ainsi  les équations

deviennent :    

         
∂u
∂ t
+u
∂u
∂ x
+v
∂u
∂ y
+w

∂u
∂ z
+u '

∂u '
∂ x

+v '
∂u '
∂ y

+w '
∂u '
∂ z

= −1
ρ
∂ p
∂ x

+ f v + ν[∂2u

∂ x2
+ ∂

2u

∂ y2
+∂

2 u

∂ z 2 ]     

       
∂v
∂ t
u

∂v
∂x
v

∂ v
∂ y
w

∂ v
∂ z
u'

∂ v '
∂ x

v '
∂ v '
∂ y

w '
∂ v '
∂ z

= − 1

∂ p
∂ y

− f u   [∂2 v

∂ x2
∂2 v

∂ y2
∂2 v

∂ z 2 ]    

        
∂w
∂t
u

∂w
∂ x

v
∂ w
∂ y

w
∂ w
∂ z
u'

∂w '
∂ x

v '
∂ w'
∂ y

w'
∂ w'
∂ z

= −1

∂ p
∂ z

− g   [∂2 w

∂x2
∂

2 w

∂ y2
∂

2 w

∂ z2 ]
Des nouveaux termes apparaissent : ils correspondent aux échanges d’énergie liées à la turbulence.
Or, ajoutant à chaque équation la divergence des écarts, qui est nulle, multipliée par l'écart de la

composante, les termes tels que  u '
∂u '
∂ x  peuvent s’écrire :  

∂u ' u '
∂ x  (voir TD). Les termes

u ' u ' , u ' v '  etc..  ne sont pas nuls et  sont appelés  tensions de Reynolds.  Ils constituent un

tenseur à 9 éléments, dit tenseur de Reynolds :

τ = ⟦τxx τxy τxz
τ yx τyy τ yz
τzx τzy τ zz

⟧ = ⟦u ' u ' u ' v ' u ' w '
v ' u ' v ' v ' v ' w '
w ' u' w ' v ' w ' w '⟧ .

Ce  tenseur  est  très  similaire  à  celui  des  contraintes  dues  à  la  viscosité  moléculaire,  alors
J.V. Boussinesq  en  s'inspirant  de  ce  que  Newton  avait  proposé  pour  la  viscosité  moléculaire,
introduisit le concept de viscosité due à la turbulence et proposa de relier ces tensions de Reynolds
aux composantes du gradient des vitesses moyennes de la façon suivante :

u ' u '=−Ax

∂u
∂ x  ;                  u ' v '=−A y

∂u
∂ y  ;                 u ' w '=−Az

∂u
∂ z

v ' u '=−Ax

∂ v
∂ x  ;                   v ' v '=−A y

∂ v
∂ y  ;                 v ' w '=−Az

∂ v
∂ z

w ' u '=−Ax

∂w
∂ x

 ;                 w ' v '=−Ay

∂w
∂ y  ;               w ' w '=−Az

∂w
∂ z

Contrairement à la viscosité cinématique moléculaire  ,  la viscosité turbulente n'est pas une
propriété du fluide, mais de l’écoulement. 

Ainsi les coefficients A (unités m2 s-1) peuvent varier d’un écoulement à un autre, ou même d’un
endroit à l'autre d’un écoulement ; en fait, ils dépendent de l’échelle sur laquelle la « moyenne » a

24



été effectuée ou du phénomène étudié.

Les équations de Navier-Stokes deviennent :

d ū
d t

= −1
ρ
∂ p
∂ x

+ f v̄ + ν[∂2 ū
∂ x2+

∂2 ū
∂ y2+

∂2ū
∂ z2 ] + ∂∂ x (Ax

∂ ū
∂ x ) + ∂

∂ y (A y
∂ ū
∂ y ) + ∂∂ z (Az

∂ ū
∂ z ),

d v̄
d t

= −1
ρ
∂ p
∂ y

− f ū + ν[∂2 v̄
∂ x2+

∂2 v̄
∂ y2 +

∂2 v̄
∂ z2 ] + ∂∂ x (Ax

∂ v̄
∂ x ) + ∂∂ y (A y

∂ v̄
∂ y ) + ∂∂ z (A z

∂ v̄
∂ z ),

d w̄
d t

= −1
ρ
∂ p
∂ z

− g + ν[∂2 w̄
∂ x2 +

∂2w̄
∂ y2 +

∂2 w̄
∂ z2 ] + ∂∂ x (Ax

∂ w̄
∂ x ) + ∂

∂ y (A y
∂ w̄
∂ y ) + ∂∂ z (Az

∂ w̄
∂ z ),

qui sont connues aussi comme RANS (Reynolds Averaged Navier-Stokes) equations .

Enfin,  en considérant les coefficients de viscosité turbulente comme constants, bien qu’il  s’agit
d’une très forte approximation, on peut réécrire les équations sous la forme :

d ū
d t

= −1
ρ
∂ p
∂ x

+ f v̄ + ν[∂2 ū
∂ x2+

∂2 ū
∂ y2+

∂2ū
∂ z2 ] +A x

∂2 ū
∂ x2 +A y

∂2ū
∂ y2 +A z

∂2 ū
∂ z2 ,

d v̄
d t

= −1
ρ
∂ p
∂ y

− f ū + ν[∂2 v̄
∂ x2+

∂2 v̄
∂ y2 +

∂2 v̄
∂ z2 ] +Ax

∂2 v̄
∂ x2 +A y

∂2 v̄
∂ y2 +A z

∂2 v̄
∂ z2 . ,

d w̄
d t

= −1
ρ
∂ p
∂ z

− g + ν[∂2 w̄
∂ x2 +

∂2w̄
∂ y2 +

∂2 w̄
∂ z2 ] +A x

∂2 w̄
∂ x2 +A y

∂2w̄
∂ y2 +A z

∂2 w̄
∂ z2 .

1.4 Simplifications

Ces équations peuvent être simplifiées de diverses manières ce qui rend les équations plus faciles à
résoudre. Certaines simplifications permettent de trouver des solutions analytiques à des problèmes
de dynamique des fluides.

Écoulement stationnaire
Une simplification des équations de la dynamique des fluides est de considérer la vitesse et toutes

les propriétés du fluide comme étant constantes dans le temps.   
∂
∂ t
=0

Pour  les  écoulements  turbulents,  on  peut  parler  de  stationnarité  statistique,  indiquant  que  les
propriétés  statistiques  ne  varient  pas  dans  le  temps et,  en  particulier,  les  champs  moyens sont
constants. Ceci est applicable à de nombreux problèmes diverses, tels que la poussée ou la traînée
d'une  aile  ou  un  flux  traversant  un  tuyau.  Les  équations  de  Navier-Stokes  et  celles  d'Euler
deviennent alors plus simples.

Approximation hydrostatique
L’océan est une couche d’eau « peu profonde » par rapport à son étendue horizontale. Du coup, les
mouvement verticaux sont généralement très inférieurs à ceux horizontaux. Cela signifie que dans
l’équation  de  Navier-Stokes  concernant  la  composante  verticale,  on neglige tous  les  termes où
apparaît la vitesse verticale. Cette équation devient alors :

0=−∂ p
∂ z
−ρg
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La vitesse verticale, quant à elle, est déduite de l’équation de continuité. Cela implique aussi qu’on
considère que la pression en tout point de l’océan est uniquement et directement proportionnelle au
poids de la colonne d'eau au-dessus de ce point et ne varie pas que le fluide soit en mouvement ou
au repos.

Approximation de Boussinesq
La masse volumique de l’eau de mer varie peu dans l’espace et dans le temps autour d’une valeur
moyenne :  ρ=ρ0+ ρ ' (x , y , z , t ) .  La  masse  volumique  peu  alors  être  considérée  comme
constante  lorsqu’elle  intervient  avec  les  quantités  de  mouvement,  mais  sa  variation  est  prise
totalement en compte quand elle intervient dans le terme de flottabilité.

Hypothèse d’incompressibilité

La masse volumique du fluide peut varier de particule à particule, donc le fluide n'est pas forcement
homogène, mais chaque particule conserve sa propre masse volumique pendant le mouvement,  i.e.
sa dérivée lagrangienne est nulle :

d 
d t

= ∂
∂ t
v⋅∇ = 0 .

Avec cette hypothèse l'équation de continuité se simplifie sous la forme :   

∇⋅v = 0

C’est  une  hypothèse  moins  contraignante  que  de  considérer  le  fluide  comme  homogène  et
stationnaire (i.e. x , y , z , t=const ).
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2.  Analyse  des  ordres  de  grandeur  et  nombres  sans
dimensions

2.1. Analyses des ordres de grandeur des termes des équations de Reynolds

"Scaling" est un terme anglais dont la traduction peut  être adimensionalisation. Pour l'application
océanographique, on regarde l'ordre de grandeur des différents termes des équations du mouvement,
pour effectuer des simplifications. On considère les deux cas de la circulation générale et de la
circulation de moyenne échelle.

Circulation générale
Pour la circulation  générale de grande échelle à l'intérieur des océans,  loin des couches limites
latérales, de surface et de fond, on a les ordres de grandeur suivants: 

L = 1000 km = 106 m, H = 1000 m = 103 m, U = 10-2 ms-1.

La vitesse verticale est estimée à partir de l'équation de continuité:
∂w
∂ z

= − ∂ u
∂ x

− ∂ v
∂ y

  
W
H

≃ U
L

donc W = UH
L

= 10−5 ms−1

Pour obtenir les ordres de grandeur des coefficients de viscosité turbulente, on impose aux termes
de frottement d'être du même ordre de grandeur que les termes non linéaires: 

u
∂u
∂ x

≃ Ax
∂2 u

∂ x2   
U 2

L
= Ax

U

L2 , A x=U L=10−2 106=104 m2 s−1  et 

w
∂u
∂ z

≃ Az
∂2 u

∂ z2  
W U

H
= Az

U

H 2 , A z=W H=10−5 103=10−2 m2 s−1

En  supposant  le  mouvement  comme  stationnaire,  les  équations  de  la  quantité  de  mouvement
deviennent alors :
- pour l'horizontale

u
∂ u
∂ x
v

∂u
∂ y
w

∂ u
∂ z

= −
1

∂ p
∂ x
fvA x

∂2u

∂ x2A y
∂2 u

∂ y2A z
∂2u

∂ z2

u
∂ v
∂ x
v

∂ v
∂ y
w

∂ v
∂ z

= −
1

∂ p
∂ y
−fuA x

∂2 v

∂ x2A y
∂2 v

∂ y2A z
∂2 v

∂ z2

avec ordres de grandeurs
U 2

L
U 2

L
WU
H

= ? f oU Ax
U

L2
A y

U

L2
Az

U

H 2

en remplaçant 
10−10 10−10 10−10 = ? 10−6 10−10 10−10 10−10

- pour la verticale

u
∂w
∂ x

v
∂w
∂ y
w

∂w
∂ z

= − 1

∂ p
∂ z
−gAx

∂2 w

∂ x2 A y
∂2 w

∂ y2A z
∂2 w

∂ z2

avec ordres de grandeurs
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UW
L

UW
L

W 2

H
= ? g Ax

W

L2 Ax
W

L2 Az
W

H 2

en remplaçant 
10−13 10−13 10−13 = ? 10 10−13 10−13 10−13

En conclusion, le terme de pression, qu'on ne sait pas estimer, doit être du même ordre de grandeur
que  le  terme  de  Coriolis:  c'est  l'équilibre  géostrophique  sur  l'horizontale  et  l'équilibre
hydrostatique sur la verticale.

0 = − 1

∂ p
∂ x
 fv

0 = − 1

∂ p
∂ y
− fu

0 = − 1

∂ p
∂ z
−g

Circulation « moyenne échelle »
Pour la circulation « moyenne échelle » les ordres de grandeur sont les suivants : 
L = 100 km = 105 m, H = 1000 m = 103 m, U = 10-1 ms-1, T 10jours  ≃ ≃ 106 s
La vitesse verticale est estimée à partir de l'équation de continuité:

∂w
∂ z

= − ∂ u
∂ x

− ∂ v
∂ y

W
H
≃ U

L
donc W = UH

L
= 10−3m s−1

Pour obtenir les ordres de grandeur des coefficients de viscosité turbulente, on impose aux termes
de frottement d'être du même ordre de grandeur que les termes non linéaires: 

u
∂u
∂ x

≃ Ax
∂2 u

∂ x2   
U 2

L
= Ax

U

L2 , A x=U L=10−1 105=10 4 m2 s−1  et 

w
∂u
∂ z

≃ Az
∂2 u

∂ z2  
W U

H
= Az

U

H 2 , A z=W H=10−3 103=1m2 s−1

- pour la verticale
∂w
∂ t
u

∂w
∂ x
v

∂w
∂ y
w

∂w
∂ z

= −
1

∂ p
∂ z
−gA x

∂2 w

∂ x2 A y
∂2 w

∂ y2A z
∂2 w

∂ z2

avec ordres de grandeurs

W
T

UW
L

UW
L

W 2

H
= ? g A x

W

L2 A x
W

L2 A z
W

H2

en remplaçant 
10−9 10−9 10−9 10−9 = ? 10 10−9 10−9 10−9

L'équilibre est encore hydrostatique puisque le terme de pression doit équilibrer g.

- pour l'horizontale
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∂u
∂t
u

∂u
∂ x
v

∂u
∂ y
w

∂ u
∂ z

= − 1

∂ p
∂ x
 fvAx

∂2 u

∂ x2A y
∂2 u

∂ y 2A z
∂2 u

∂ z2

avec ordres de grandeurs

U
T

U 2

L
U2

L
WU
H

= ? f U Ax
U

L2 Ay
U

L2 A z
U

H 2

en remplaçant 
10−7 10−7 10−7 10−7 = ? 10−5 10−7 10−7 10−7

La  géostrophie  n’est  satisfaite  qu’à  quelques  pour-cents  près:  c’est  un  équilibre  quasi-
géostrophique. Du coup il faut garder tous les autres termes.

2.2. Le nombre de Reynolds

Les termes d'advection sont non-linéaires parce qu'ils représentent des dérivées de carrés de vitesse

e.g. u
∂u
∂ x
=

1
2
∂u2

∂ x  , ou le produit de différentes composantes de la vitesse et de leurs dérivées

e.g. v
∂u
∂ y  .

Cette équation est instantanée et donc u, v et w présentent des variations (ou perturbations) au cours
du temps. A cause de ces termes non-linéaires,  une faible perturbation peut induire une grande
fluctuation.
Ces termes peuvent engendrer une instabilité quand ils sont « suffisamment grands » comparés aux
termes visqueux qui eux ont tendance à homogénéiser ou effacer les différences de vitesse.
Pour  estimer ce  que  signifie   « suffisamment  grands »,  considérons  le  rapport  d'un terme non-
linéaire à un terme de tension visqueuse:

u
∂u
∂ x

 ∂
2u
∂ x2

Si l'on analyse les dimensions, on voit qu'il s'agit d'un nombre sans dimension.
Si l'on considère  u et ∂ u comme étant de l'ordre de  U (échelle de vitesse typique) et ∂ x de
l'ordre  de  L (échelle  de  longueur  typique  sur  laquelle  la  vitesse  U  varie)  le  rapport  précédent
devient:

U 2

L

 U
L2

= UL


= R e

et est appelé nombre de Reynolds pour un écoulement fluide. 
Re détermine le caractère laminaire ou turbulent de l'écoulement. Si Re  105  l'écoulement est
turbulent .  Pratiquement  tous  les  mouvements  océaniques  sont  des  écoulements  turbulents.  Par
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exemple, pour le Gulf Stream on a U= 1m/s, L = 100 km= 105 m, ν = 10-6 m2/s donc, Re = 1011.
Les effets non linéaires sont très grands par rapport aux termes moléculaires (visqueux). En fait, en
mer ouverte, on peut toujours négliger les effets moléculaires visqueux. Ils deviennent importants
au voisinage immédiat de parois solides et, ôtant de l'énergie à l'écoulement turbulent aux petites
échelles,  l'empêchent  de  s'amplifier  sans  limitation.  Les  effets  moléculaires  visqueux  sont
importants pour les faibles valeurs de Re, i.e. pour les faibles valeurs de u et/ou L.

2.3. Nombre de Rossby et nombre d'Ekman

L'importance relative des termes non linéaires par rapport au terme de Coriolis est appelé nombre
de Rossby:

Ro =
U 2/L
f U

=
U
f L

où U , L et f sont les ordres de grandeurs respectifs pour la vitesse horizontale, l'échelle spatiale
horizontale et le facteur de Coriolis.

Si Ro≪1 les termes non linéaires sont négligeables par rapport au terme de Coriolis (géostrophie
ou quasi-géostrophie).
Si Ro≫1 le terme de Coriolis est négligeable par rapport aux termes non linéaires. C'est le cas
des mouvements à petites périodes (hautes fréquences) tels que les vagues et la houle. 
Si Ro≃ 1 on ne peut rien négliger. C'est le cas des mouvements à période proche de la période
d’inertie, tels que le courant d’inertie, la marée, les ondes internes de grand longueur d'onde.

Le nombre d'Ekman vertical compare le terme de frottement vertical au terme de Coriolis:

Ek=
 ∂

2 u
∂ z2

f v
=
 U

H2

f U
= 

fH2

Ce nombre est  souvent  faible,  mais l'importance du frottement  est  essentielle  dans les couches
limites.
Il est très important de noter que en océanographie, étant donné que tous les écoulements sont
turbulents,  dans  la  définition  du  nombre  de  Reynolds  et  du  nombre  d'Ekman  on  remplace  la
viscosité moléculaire par la viscosité turbulente:

R eh
turb = UL

Ah

R ez
turb = UL

A z

        et        Ek z
turb=

A z

fH2
.

Dans ces derniers cas il serait plus correct de parler du nombre de Reynolds turbulent et du nombre
d'Ekman turbulent .
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3. Courants sans frottement

3.1  L'écoulement géostrophique

La géostrophie traduit l'équilibre entre la force de pression horizontale et la force de Coriolis. On considère
donc ici que les courant sont permanents et que la tension du vent et autres termes de frottement peuvent être
négligés .  C'est  la  circulation  générale .  L'écoulement  géostrophique  est  donc  défini  par  ce  système
d'équations :

f v =
1

∂ p
∂ x

f u = − 1

∂ p
∂ y

∂ p
∂ z

= −g

Les  deux  premières  équations  traduisent  l'équilibre  géostrophique,  la  troisième  est  l'équation  de
l'hydrostatique . Ces équations sont obtenues à partir des équations de Navier-Stokes, dans l'approximation
de Boussinesq, en supprimant l'accélération et  les termes de frottement .  Les courants qui satisfont à ce
système sont appelés courants géostrophiques .
Tous  les  grands  courants  océaniques  permanents,  tels  que  le  Gulf  Stream,  le  courant  Antarctique
Circumpolaire, les Grands Courant Equatoriaux sont, en première approximation en équilibre géostrophique .
Et le Courant Nord au large de Marseille, est-il en équilibre géostrophique ? Voir le projet de modélisation de
P.Recoules ( PDF du rapport et PDF de la presentation )

Imaginons une situation simpliste: de l'eau de mer de masse
volumique constante o occupant un bassin océanique et
une pente à la surface de l'eau. 

Selon la loi de l'hydrostatique la pression en un point du
fluide est simplement la pression due au poids de la colonne
d'eau  située au  dessus  de  ce  point,  agissant  par  unité  de
surface :

P1=o g z ; P2=o g z z 

Le terme de gradient de pression suivant x s'écrit :

1
o

∂ p
∂ x

≃ 1
o

P2−P1

 x
= 1

o

o g z z−o g z

 x
= g

 z
 x

En approximation  hydrostatique  et  pour  un  fluide  homogène  le  gradient  de  pression  est  créé  par  une
différence  de  niveau  de  hauteur  de  la  colonne  d'eau.  On  peut  ainsi  calculer  l'intensité  du  courant  en
approximation géostrophique 

v ≈  g
f
 z
 x

u ≈ − g
f
 z
 y

En  générale,  intégrant  l'équation  de  l'équilibre  hydrostatique  entre  un  niveau  de  référence −zo et  la
surface de la mer  on obtient l'expression suivante pour la pression
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∫−z o


dp = −0 g∫−z o


dz

[ p]−zo

 =−0 g [z ]−zo



pη−p−zo
=−ρ0 g[η+z o]

p− zo
=p0 g[zo]

et, si on remplace dans les termes de gradient horizontal de pression, étant la pression atmosphérique p
et le niveau de référence zo des constantes, on obtient
 

1

∂ p
∂ x

= g
∂
∂ x

1

∂ p
∂ y

= g
∂
∂ y

avec  la hauteur de la surface de la mer.
Ddans le jargon océanographique on parle aussi de
surélévation ou  ssh -  sea  surface height),  calculée
par rapport à l’ellipsoïde.

Le gradient de pression est le même partout à l'intérieur du fluide. Donc si aucune autre force n'agit, le fluide
entier doit être accéléré des hautes vers les basses pressions.
En incluant ces formules dans le système d’équations ci-dessus, on obtient un nouveau système de deux 
équations

f v = g
∂
∂ x

f u = −g
∂ 
∂ y

D'autre part en multipliant la première équation par u  et la seconde par v et en les retranchant, il vient :

u
∂
∂ x
v

∂
∂ y

= 0 i.e. v⋅∇  = 0

Il résulte de ceci, d'une part que le fluide ne dévale pas la pente des hautes vers les basses pressions, mais
tourne autour du dôme de pression. L'écoulement est parallèle aux isobares (perpendiculaire au gradient de
pression), et d'autre part la vitesse du courant est proportionnelle à la pente des isobares .
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Dans l'hémisphère Nord une pente de la surface de l'eau orientée de l'Est vers l'Ouest crée une force de
gradient de pression dirigée vers l'Ouest .
Cette pente crée à l'origine un mouvement des particules d'eau vers l'Ouest, mais dès que la particule entre en
mouvement la force de Coriolis vient agir à droite (dans l'Hémisphère Nord) du mouvement. 

L'équilibre  est  atteint  lorsque  l'écoulement  devient
perpendiculaire au gradient de pression, et donc parallèle aux
isobares .
Dans l'hémisphère nord l'écoulement se fait dans le sens des
aiguilles d'une montre autour des hautes pressions, dans le sens
inverse autour des basses pressions . Quand on regarde dans la
direction de  l'écoulement,  les  hautes  pressions  sont  à  droite
dans l'hémisphère Nord, à gauche dans l'Hémisphère Sud .
Ce  mouvement  peut  durer  indéfiniment  (étant  donné  qu'on
néglige les frottements) contrairement à ce qui se passerait en
milieu non tournant où les hautes pressions auraient tendance à
combler les basses pressions.

Un schéma très simplifié de la circulation de surface dans l'océan global est celui qui consiste à
imaginer dans chaque bassin limité par des continents qu’il  y a deux grandes recirculations ou
gyres, un subtropical anticyclonique et un subpolaire cyclonique. Ce schéma fonctionne bien pour
l'Atlantique Nord et le Pacifique Nord qui sont délimités par des côtes, mais pas au Sud ou aucune
côte  n’arrête  les  courants  qui  sont  circumpolaire.  C’est-à-dire  que  l’on  peut  naviguer  sans
interruption et à la même latitude au sud des Océans Atlantique, Pacifique et Indien, autour du
continent Antarctique.

figure tirée de http://en.wikipedia.org/wiki/Ocean_current

figure tirée de 
http://en.wikipedia.org/wiki/Gyre
et modifiée.

Dans la figure ci-dessous est illustré le principe de fonctionnement de l’altimétrie satellite, qui fournit des
cartes de ssh  pour l’océan globale. Ensuite, en utilisant l’approximation géostrophique on peut aussi estimer
par satellite les courants de surface. 
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Aviso.fr

https://www.futura-sciences.com/sciences/dossiers/
astronautique-decouvrir-altimetrie-495/page/5/

3.2  Le courant d’inertie

Si une particule n'est soumise à aucune force extérieure, son accélération dans un repère d'inertie obéit à la
IIème loi de Newton . Les équations du mouvement se simplifient de la façon suivante :

d u
d t

= f v

d v
d t

= −f u

en résolvant pour u et en remplaçant dans la deuxième équation avec f constant,

v=1
f

du
d t

1
f

d2 u
d t 2 = −f u i.e.

d2u
d t2f 2 u = 0

 
La solution générale de cette dernière équation différentielle du deuxième dégrée est notamment :

u = V o cos ft  et si on remplace dans l'équation pour v
v = −V osin ft

où la vitesse V o et le déphasage  dépendent des conditions initiales .
Ces équations représentent un courant dont la direction tourne en sens des aiguille d'une montre en faisant un

tour complet dans une période dite période inertielle T=2 π
f

.
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En intégrant de nouveau, avec u = dx
dt

et v = dy
dt

on obtient la trajectoire :

x = xo+
V o

f
sin( ft+ψ)

y = yo+
V o

f
cos (ft+ψ)

(x−xo)
2+( y− y o)

2 = (V o

f )
2

Cette dernière formule montre que la trajectoire parcourue par une particule fluides « piégée » dans une 
oscillation d’inertie, est un cercle de centre (xo,yo) et de rayon |Vo|/f.

Le mesures effectuées avec un radar côtier par le collègue de l'Université de Toulon confirme ce modèle 
analytique.

voir animation dans la 4e diapo de:
https://people.mio.osupytheas.fr/~petrenko/TEACHING/SM23/OscillationsInertie.odp
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Annexe : Circulation de surface (générée par le vent)

 

Remerciements   Figures de M. Fieux, L’océan planétaire 2010‍
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4. Les équations e.p.p. et la vorticité

4.1  Équations en eaux peu profondes

Auparavant  on  a  vu  que  l'évolution  de  la  vitesse  horizontale  moyenne  (au  sens  de  la  turbulence)  des
particules du fluide géophysique est décrite par les équations de Navier-Stokes :

∂u
∂ t
u

∂ u
∂ x
v

∂u
∂ y
w

∂u
∂ z

= −
1
o

∂P
∂ x
 f v−

∂u ' u '
∂ x

−
∂u ' v '
∂ y

−
∂u ' w '
∂ z

∂v
∂ t
u

∂ v
∂ x
v

∂v
∂ y
w

∂ v
∂ z

= −
1
o

∂P
∂ y

− f u−
∂ v ' u '
∂ x

−
∂v ' v '
∂ y

−
∂ v ' w'
∂ z

u, v  et  w sont les composantes horizontales et verticale non turbulentes ou « moyennes » de la vitesse du
mouvement ;
u', v' et w' sont les composantes turbulentes de la vitesse du mouvement ;
f est le paramètre de Coriolis ;
P est la pression ;
ρo est la densité de référence de l'eau de mer au sens de l'hypothèse de Boussinesq .

Le premier terme correspond à la variation locale de la vitesse en fonction du temps . Dans le deuxième,
troisième  et  quatrième  terme  sont  représentées  les  advections  horizontales .  Le  cinquième  terme  est  le
gradient de pression. 

Le sixième terme est le terme de Coriolis, qui rend compte de l'influence de la rotation de la Terre  ; si les
écoulements sont à une échelle suffisamment réduite, on peut approcher la surface terrestre par son plan
tangent  et  considérer la force de Coriolis  i)  constante :  approximation de plan-f , f = f o ,  dynamique
côtière ;   ii)  variable  linéairement  avec  la  coordonnée  méridienne :  approximation  de

plan− , f = f o y , dynamique régionale, mais aussi grande échelle .

Les trois derniers termes sont les termes turbulentes . La théorie dite de la « fermeture Newtonienne » dit que
comme pour la viscosité moléculaire, on peut introduire des coefficients de viscosité turbulente et re-écrire
les moyennes des produits des composantes turbulentes de la vitesse en terme de vitesse moyennes : 

u ' u '=−Ax

∂u
∂ x  ;                      u ' v '=−Ay

∂ u
∂ y  ;                      u ' w '=−A z

∂u
∂ z  ;

v ' u '=−Ax

∂ v
∂ x  ;                      v ' v '=−Ay

∂ v
∂ y  ;                      v ' w'=−Az

∂ v
∂ z  .

Pour  les  échelles  typiques  de  la  plus  part  des  mouvements  océaniques,  l'équation  pour  la  composante
verticale de la vitesse est  réduite à l'équation de l'hydrostatique,  qui traduit  l'équilibre entre la force de
pression et la force de pesanteur. Elle fournit la pression:

P z =Pag∫z


⋅dz

où Pa est la pression atmosphérique, g est l'accélération de la gravité et η l'élévation de la surface par rapport
au zéro de l'axe Oz . z = η(x, y, t) constitue ainsi la surface libre de l'océan tandis que z = -h(x, y) repère le
fond.   est  la  masse  volumique.  En  utilisant  l'approximation  de  Boussinesq
≡o '  x, y , z , t  avec  '≪o , les dérivées horizontales deviennent
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1
o

∂P
∂ x

=
1
o

∂Pa

∂ x
g

∂
∂ x


g
o
∫

z


∂ '
∂ x

dz

1
o

∂P
∂ y

=
1
o

∂Pa

∂ y
g

∂
∂ y


g
o
∫
z


∂'
∂ y

dz

Le deuxième et le troisième terme de droite des équations ci-dessus sont respectivement les contributions
barotrope  et barocline au gradient de pression.

Si  on néglige la  contribution barocline et  celle  de la  pression  atmosphérique,  le  gradient  horizontal  de
pression pourra alors s'exprimer :

∇H P = o g∇H
  

Cette équation dit que le forces qui agissent dans le fluide sont purement horizontales, donc on peut supposer
que les composantes horizontales de la vitesse seront indépendantes de   z     . Ainsi les quatrièmes termes dans
les équations de Navier-Stokes sont nuls et le terme de viscosité turbulente verticale est remplacé par les
conditions aux bords qui représentent les forçage du vent F≡F x , F y et au fond B≡B x , B y .
Les équations du mouvement deviennent

∂u
∂ t
+u
∂ u
∂ x
+v

∂u
∂ y

= −g
∂η
∂ x
+f v+Ah[∂2 u

∂ x2+
∂2 u
∂ y2 ]+F x−B x (1)

∂v
∂ t
+u
∂v
∂ x
+v

∂ v
∂ y

= −g
∂η
∂ y
−f u+Ah[∂2 v

∂ x
+∂

2 v
∂ y ]+F y−B y (2)

Il y a donc deux équations pour trois inconnues (les deux composantes de la vitesse et la surélévation). Pour
fermer le système, il faut ajouter l'équation de continuité écrite en fonction de ces trois variables.
On prend alors l'équation de continuité pour un fluide incompressible :

∇⋅u = ∂w
∂ z

  ∂u
∂ x
 ∂ v
∂ y  = 0

en intégrant du fond à la surface libre, vu que les vitesses et leurs dérivées sont indépendantes de  z on
obtient:

w z= − w z=−h  h  ∂u
∂ x

∂v
∂ y  = 0 .

À la surface

w z= =
d 
d t

=
∂
∂ t
u

∂
∂ x
v

∂
∂ y

.

Au fond, en considérant que la bathymétrie ne varie pas dans le temps

w z=−h = −
d h
d t

= −u
∂ h
∂ x
−v

∂h
∂ y

.

En substituant, on obtient :
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∂H
∂ t
+ ∂(Hu)

∂ x
+ ∂(Hv )
∂ y

= 0 avec H=h+η (3)

L'ensemble des trois équations (1-3) constitue les équations en eaux peu profondes (e. p. p. ou shallow water
equations). Elles sont valables, comme pour l'approximation hydrostatique, quand l'eau est très basse par
rapport aux échelles horizontales que l'on veux étudier.
Les équations e. p. p. sont utilisées pour étudier, entre autre, les ondes longues de gravité ou gyroscopiques.
Pour cela il faut considérer les équation linéarisées,  sans viscosité turbulente et faire l'hypothèse ≪h .
Par ailleurs, si h = const, f = 0 et le mouvement ne dépend que de x (1D) , les équations deviennent:

∂u

∂t
=−g

∂

∂ x

si on dérive  par 

∂ x

∂
∂ x

∂u

∂t
=−g

∂2 

∂ x2

On obtient
∂2 

∂ t2
−gh

∂2 

∂ x2
=0

∂

∂ t
h

∂u

∂ x
=0

∂ t

∂2 

∂ t2
h

∂
∂ t

∂u

∂ x
=0

Cette dernière est un équation d'onde qui a pour solution =F x−ct  avec c= gh . 
(Voir Cours « Ondes dans l'océan » en L3 ou « Circulation et dispersion en Eaux Côtières » en M2)

4.2 La vorticité

Il existe différents types de vorticité : relative, planétaire, absolue et potentielle .

La vorticité relative 
Elle est définie comme la composante verticale du rotationnel de la vitesse

 = k ∇×V  =
∂v
∂ x
−
∂u
∂ y

La vorticité relative exprime la tendance d'un fluide à
tourner.  Le  signe  de  peut  être  illustré  avec  le
schéma ci-contre .

Elle  est  appelée  vorticité  relative,  car  elle  est
mesurée par rapport à la terre.

La vorticité planétaire

Pour un solide en rotation la vorticité est égale à deux fois sa vitesse angulaire. A la latitude  la vitesse
angulaire par rapport à l'axe verticale en ce point est  sin , la vorticité est donc 

2 sin = f

Une colonne d'eau au repos sur la terre en rotation possédera donc une vorticité dite « planétaire »  f .  La
vorticité planétaire  correspond au paramètre  de Coriolis  en approximation dite  de « mouvements  quasi-
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horizontaux » (voir TD4) .

La vorticité absolue

On prend les équations de la quantité de mouvement pour les composantes horizontales, en considérant
qu'elles ne varient pas sur la verticale. On néglige aussi la viscosité et le frottement (on se positionne donc
hors des couches d'Ekman et des couches limites de bords Ouest) :

∂u
∂ t
+u
∂ u
∂ x
+v
∂u
∂ y
− fv = −g

∂η
∂ x

∂ v
∂ t
+u
∂ v
∂ x
+v
∂ v
∂ y
+ fu = −g

∂η
∂ y

Différence croisée et soustraction ∂x 2−∂ y 1

∂
∂ y

∂ u
∂ t

 ∂u
∂ y

∂u
∂ x
u

∂2 u
∂ y ∂ x

 ∂ v
∂ y

∂u
∂ y
v

∂2u

∂ y2
− ∂ f

∂ y
v− f

∂ v
∂ y

= − 1
o

∂2 p
∂ y∂ x

∂
∂ x

∂v
∂ t


∂u
∂ x

∂v
∂ x
u

∂2 v

∂ x2 
∂ v
∂ x

∂ v
∂ y
v

∂2 v
∂ x∂ y


∂ f
∂ x

u f
∂u
∂ x

= −
1
o

∂2 p
∂ x∂ y

conduisent à une seule équation (en se rappelant que
d f
d t
=∂ f
∂ t
u

∂ f
∂x
v

∂ f
∂ y )

∂
∂ t  ∂v

∂ x
− ∂u
∂ y  ∂u

∂ x ∂v
∂ x
− ∂u
∂ y  u

∂
∂ x  ∂v

∂ x
−∂u
∂ y   ∂v

∂ y  ∂v
∂ x
−∂u
∂ y   v

∂
∂ y  ∂v

∂ x
−∂u
∂ y   d f

d t
 f  ∂u

∂ x
∂v
∂ y=0

qui peut être re-écrite

∂
∂ t
  ∂u

∂ x
  u

∂
∂ x

 ∂ v
∂ y
  v

∂
∂ y

 d f
d t
 f  ∂u

∂ x
 ∂v
∂ y =0

en regroupant les termes 1, 3 et 5, qui représentent la dérivée totale de la vorticité relative et aussi les termes
2 et 4

d 
d t

  ∂u
∂ x

∂ v
∂ y  d f

d t
 f  ∂u

∂ x

∂ v
∂ y=0

et finalement
d  f 

d t
  f  ∂u

∂ x

∂v
∂ y  = 0

Cette équation exprime le principe de la conservation de la vorticité absolue  ab s =  f  pour les
écoulements sur terre lorsque le frottement est négligé : le module de la vorticité absolue s'accroît dans un
écoulement convergent ∇H u  0 et décroît dans un écoulement divergent ∇H u  0 .

La vorticité potentielle

Soit une couche d'épaisseur D dans laquelle la densité est supposée homogène.
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L'équation de continuité s'écrit :
∂u
∂ x

∂ v
∂ y

∂w
∂ z
=0

on peut écrire que :

∂w
∂ z

=
 d h1

d t
−

d h2

d t 
h1−h2

=
1
D

d D
d t

en remplaçant dans l'équation de continuité
1
D

d D
d t

= − ∂u
∂ x

∂ v
∂ y

tirée de Daniault (2005), Océanographie Physique

On peut alors remplacer la divergence horizontale dans l'équation de conservation de la vorticité absolue et
obtenir

d
dt f

D  = 0

NB : On a utilisé la règle de la dérivé de la division:

d
dt a

D =0   d a

d t
D−a

dD
dt  1

D2=0 
d a

d t
1
D
− a

dD
dt

1

D2=0 
d  a

d t
− a

dD
dt

1
D
=0

Si on compare les dimensions de quatre vorticité: relative, planétaire, absolue et potentielle

rel : [ LT−1

L ]=[T−1]  pla : [T−1] a b s : [T−1]  pot : [T−1

L ]=[T−1 L−1]

on voit que la vorticité potentielle n'a pas les mêmes dimensions que les autres!

NB:  Une  formulation  plus  générale  de  la  vorticité  potentielle  tient
compte aussi des effets de la densité, de la température, de la salinité
ou  autre,  et  les  dimensions  dépendent  de  la  grandeur  prise  en
considération

d
dt a b s⋅

∇
  = 0

5.3 La conservation de la vorticité

Ci-dessous on explique en terme de conservation de la  vorticité  absolue et  potentielle  des phénomènes
importants de la circulation océanique et atmosphérique.

Vorticité absolue et Ondes de Rossby

Une série de particules est disposée sur un parallèle (ligne pointillée et continue), et est ensuite déformée par
une sinusoïde (ligne continue). 
Les particules qui se retrouvent plus au Nord augmentent leur vorticité planétaire et, par conservation de la
vorticité absolue, auront une vorticité relative négative (anticyclonique, en sens horaire), qui fera déplacer les
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maxima de la sinusoïde vers l'Ouest. 
D'une façon similaire les minima bougent aussi vers l'ouest (vorticité relative positive, cyclonique, en sens
anti-horaire).   Toute l'onde sinusoïdale tends alors à bouger vers l'Ouest:  ces types d'ondes sont connue
commes Ondes de Rossby, qui les a découvertes en cherchant des solutions analytiques ondulatoires des
équations de Navier-Stokes.

Conservation de la vorticité potentielle

Intensification des courants de bord ouest

Prenons  l'exemple  de  l'Atlantique  Nord.
Schématisons la circulation le long des bords par des
vitesses  uniquement  méridiennes,  illustrant  le  gyre
subpolaire au nord et subtropicale au sud.

La vorticité relative s'écrit alors :

 =  ∂ v
∂ x

−
∂u
∂ y  = ∂ v

∂ x

cyclonique                        anticyclonique

On peut expliquer l'intensification des courants de bord Ouest par la conservation de la vorticité potentielle  :
si D reste constante le long des frontières océaniques (cette condition n'est pas indispensable, ni forcément
vraie mais elle permet une explication plus simpliste), la seule façon de conserver la vorticité potentielle est
de diminuer  quand l'écoulement est dirigé vers les pôles, et d'augmenter  quand l'écoulement est
dirigé vers l'équateur. Il en résulte un écoulement plus intense concentré le long des frontières Ouest de
l'océan, alors que l'effet inverse s'observe le long des côtes Est.

43



Sketch of the major surface currents in the North Atlantic. Values are transport in units of 106m3/s.
From Sverdrup, Johnson, and Fleming (1942: fig. 187).

The figure shows a broad, basin-wide, mid latitude gyre as we expect from Sverdrup's theory. In the
west, a western boundary current, the Gulf Stream, completes the gyre. In the north a subpolar gyre
includes the Labrador current.  An equatorial  current system and countercurrent  are found at low
latitudes with flow similar to that in the Pacific.

Tirée de http://oceanworld.tamu.edu/resources/ocng_textbook/chapter11/chapter11_01.htm 
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Intensification des tourbillons étirés

Si on se met sur un plan-f

 D  = const

alors une colonne d'eau qui bouge entre deux
surfaces  sur  les  quelles  doit  être
conservée, doit se modifier pour satisfaire les
lois de conservation de la masse et du moment
angulaire.  Plus  grande sera  la  hauteur  de la
colonne, plus grande devra être la vitesse de
rotation de la colonne de fluide.

 D00

 D00

Tirée de Mattioli (1995) Principi Fisici di Oceanografia e Meteorologia, 
Fig.48.1

Vent dépassant une chaîne montagneuse

Les isosurfaces de température potentielle tendent à suivre la forme d'un obstacle mais avec des rayons de
courbure grandissant avec la hauteur. Il y a une espèce de lissage des obstacles.

Dans un écoulement qui passe au dessus d'une montagne, la colonne d'air comprise entre deux valeurs de
température potentielle d'abord s'étire, et ensuite se comprime (partie a de la figure ci-dessous).

Pour un écoulement qui vient de l'Ouest (partie b), ce fait comporte un mouvement d'abord cyclonique et en
suite fortement anticyclonique, qui déclenche des oscillations en aval.

Pour un écoulement qui vient de l'Est (partie c), par contre, il y a une déviation symétrique vers le Sud.

Adaptée depuis Fig. 48.2 de Mattioli (1995) Principi Fisici di Oceanografia e Meteorologia
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	1.2.2 Champ de pesanteur (gravitation+ force axifuge)

