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Abstract – The aim of this work is to study the effects of different individual behaviours
on the overall growth of a spatially distributed population. The population can grow on
two spatial patches, a source and a sink, that are connected by migrations. Two time
scales are involved in the dynamics, a fast one corresponding to migrations and a slow
one associated with the local growth on each patch. Different scenarios of density-
dependent migration are proposed and their effects on the population growth are
investigated. A general discussion on the use of aggregation methods for the study of
integration of different ecological levels is proposed. © 2000 Académie des sciences/
Éditions scientifiques et médicales Elsevier SAS
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Résumé – Émergence du comportement individuel au niveau de la
population. Effets des migrations densité-dépendentes sur la dynamique de
la population. Le but de ce travail est l’étude des effets de différents comportements
individuels sur la croissance à long terme d’une population spatialement distribuée. La
population peut se développer sur deux sites, une source et un puits, connectés par des
flux migratoires. Deux échelles de temps sont impliquées dans la dynamique, une
échelle rapide correspondant à la migration et une échelle lente associée à la croissance
de la population sur chaque site. Différents scénarios de migrations densité dépendantes
sont proposés et leurs effets sur la dynamique de population sont étudiés. Une
discussion générale sur l’utilité des méthodes d’agrégation des variables pour l’étude de
l’intégration des différents niveaux d’organisation des systèmes écologiques conclut
l’article. © 2000 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

méthodes d’agrégation / champs lents-rapides / population distribuée
spatialement / migrations densité-dépendantes / niveaux d’organisation
écologique

Version abrégée

Un problème majeur de l’écologie concerne l’étude
de l’influence des comportements individuels sur la

dynamique globale de la population et sur la stabilité
des communautés. Quel est l’effet d’un changement de
comportement des individus sur la dynamique globale
de la population ? Le but de cet article est d’aborder ce

* Correspondence and reprints: pauger@biomserv.univlyon1.fr

119

C.R. Acad. Sci. Paris, Sciences de la vie / Life Sciences 323 (2000) 119–127
© 2000 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés
S0764446900001050/FLA



problème général en l’illustrant par l’exemple d’une
population pouvant se développer dans un environne-
ment hétérogène.

Les individus peuvent se trouver sur deux sites
différents, un site favorable (la source) et un site
défavorable (le puits). Certaines ressources indispen-
sables à la survie sont présentes sur la source mais en
quantité limitée. De ce fait, la compétition entre les
individus sur la source est importante ce qui les conduit
à quitter régulièrement la source pour le puits. Un flux
migratoire inverse du puits vers la source permet aux
individus de revenir sur le site favorable. Les migrations
entre les deux sites se produisent à l’échelle de la
journée et sont donc fréquentes, en regard de la
croissance des individus sur chacun des sites à laquelle
est associée une échelle de temps lente.

Nous envisageons diverses hypothèses de migration
dépendante de la densité et nous étudions leurs effets
sur la dynamique globale de la population à long
terme. Dans un premier temps, nous testons une
migration du puits vers la source qui est favorisée à
haute densité, c’est-à-dire que les individus quittent le
puits proportionnellement à la densité d’individus sur
ce site. Ce type de règle de migration provoque un effet
Allee, c’est-à-dire que pour une condition initiale en
dessous d’un certain seuil, la population s’éteint, alors
que, au-dessus de ce seuil, elle croît exponentielle-
ment. Un second cas est étudié correspondant à une
migration du puits vers la source qui est attractive à
basse densité et répulsive à haute densité. Ce modèle
présente à nouveau un effet Allee, mais contrairement

au cas précédent, au-dessous du seuil critique, la
population ne s’éteint pas; les densités d’individus sur
chaque site oscillent périodiquement. Ce phénomène
correspond à l’apparition d’un cycle limite stable sous
le seuil critique. Nous montrons que selon les valeurs
des paramètres du modèle, il est également possible
que les densités n’oscillent pas, mais tendent vers un
équilibre stable.

Cet exemple simple, avec différentes règles de
migration dépendante de la densité, montre clairement
comment le changement de comportement des indivi-
dus à l’échelle de temps journalière peut influencer la
loi de croissance de la population à long terme. L’arti-
cle se termine par une discussion générale concernant
la pertinence des méthodes d’agrégation des variables
pour l’étude de l’intégration des différents niveaux
d’organisation des systèmes écologiques. Ces métho-
des sont basées sur l’existence de différentes échelles
de temps et permettent, à partir de la connaissance des
processus se déroulant dans les niveaux inférieurs, de
faire émerger la dynamique des niveaux supérieurs. Le
résultat final de cette opération consiste en un système
composé de niveaux d’organisation. La dynamique
dans chacun des niveaux est connectée à celles des
autres niveaux à travers des couplages ascendants et
descendants. Les couplages ascendants prennent en
compte les effets des niveaux inférieurs sur les niveaux
supérieurs, c’est-à-dire l’influence des dynamiques
locales sur l’évolution à long terme du système. Les
couplages descendants correspondent aux effets des
dynamiques globales sur les processus locaux rapides.

1. Introduction

The literature concerning population dynamics and
habitat fragmentation is of increasing interest. In the early
approach of Levins [1, 2], the environment is a set of
patches colonised by individuals where population can
grow or where extinction can occur. The variable is the
proportion of occupied patches. In such metapopulation
models [3, 4], the population dynamics within each patch
is ignored. It is assumed that the population can rapidly
reach an equilibrium density on each patch, characterised
by the presence or the absence of the species. This
assumption can be justified by time scale arguments.
There is a fast time scale associated with the rapid transient
growth dynamics of each patch sub-population. This intra-
patch dynamics is not described, regarding growth or
extinction of local patch sub-populations. Another slower
time scale corresponds to the colonisation process as a
result of migration between the different patches. The
model only describes the process at the slow time scale in
terms of the proportions of occupied patches.

Several authors have also considered population
dynamics models in a patchy environment composed of a

set of two or more separated patches, connected by migra-
tion, but they assumed that the time scales for the intra-
patch dynamics and the migration were of the same order.
This type of model was developed in order to study the
influence of density-independent or density-dependent
migration in predator–prey and host–parasitoid
systems [5–8]. Moreover, numerous biological systems
(see [9] for a review) have been studied for their ability to
assess and behaviourally control the risk of predation:
Notonecta hoffmanni [10]; Notonecta undulata [11]; the
three-spined sticklebacks [12].

The present paper also deals with two time scales, but
inversely to metapopulation models, the fast time scale
now relates to migration between patches and the slow
one to intra-patch dynamics. Few works have been
devoted to this case. The fundamental reason probably lies
in the fact that, by assuming strong connections between
patches, one can reduce the system to a single patch. In
this case, the structure of patch connections has scant
qualitative influence on the global dynamics of the total
population. Indeed, this is true when migration between
patches is density-independent. However, the reduction
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of the system to a single patch is not so trivial in the case of
density-dependent migration.

Indeed, different rules for migration at the fast time scale
can have important consequences on the growth of the
total population at the slow time scale [13, 14]. Such
models are of great interest for the study of populations
living in a patchy environment and exploring it at a fast
time scale. Each patch has its own characteristics and the
way the animals visit and exploit different patches can
have important consequences on the total population
persistence or extinction.

An important aspect of ecological modelling relates to
the study of the influence at the population level of the
behaviours and tactics that are selected by the individu-
als [13, 15]. Most models in population dynamics are
simple in the sense that they consider a small number of
variables and parameters. For example, a system of two
interacting populations is represented by a system of two
ODEs, in which the variables usually are the total popula-
tion densities. In such models, the internal structure of the
populations is ignored; that is, any further decomposition
into sub-populations, associated with ages or stages. Indi-
vidual tactics related to phenotypes are not considered.
From an ecological point of view, the advantage of such
models is that they can usually be analytically handled,
allowing one to obtain general results for the population
dynamics, in terms of steady states, periodic solutions, etc.
But they are very simple and many aspects are neglected
that may have important effects on the global dynamics of
the overall system.

In contrast, more complicated models have also been
developed, that intend to take into account many details of
the ecological systems [16, 17]. Such models may have
many variables and parameters, and they are usually built
up to take into account the detailed structure of the popu-
lations and the various interactions between the sub-
populations and the environment. However, it is not clear,
in the construction of such complicated models, which
details should be taken into account and which of them
should be ignored. Furthermore, these models are in gen-
eral very difficult to analyse mathematically, and in most
cases only computer simulations can be performed.
Through such an approach, only the dynamics for a given
set of parameters and initial conditions can be simulated,
and it is often impossible to obtain general conclusions
concerning the dynamics of the system. A major limitation
is that some bifurcations, i.e. qualitative changes in the
dynamics when parameters are varied, may take place for
some untested parameter values. Hence, in such compli-
cated systems with so many parameters, a correct com-
plete bifurcation analysis is impossible.

Aggregation techniques constitute an alternative
method between these two modelling approaches. The
aggregation concept was first developed in economic
modelling, and was introduced into ecological modelling
by Iwasa et al. [18]. This concept deals with models where
individual strategies and population dynamics are
involved together. The first aspect of interest in aggrega-

tion methods is that they allow one to reduce the dimen-
sion of the mathematical model. The reduction can be
performed either by an adequate change of variables
(perfect aggregation, [18]) or by approximation tech-
niques (approximate aggregation [19]). When the dynam-
ics of the system involves at least two different time scales,
we proposed approximate aggregation methods based on
perturbation theory [13, 14, 20–22]. Not only is the
‘aggregated’ model a mathematical object that approxi-
mates the initial model, but also there is a strong relation
between the complete and the aggregated models because
we use the dynamic structure of the initial model in order
to build the aggregated one. In most examples, a fast time
scale relates to the individual level and a slow one to the
population and community levels.

Indeed, the characteristic time scale at the individual
level can often be supposed to equal a few days, as
individuals look for resources and/or make a decision to
change patches frequently. For example, Cowlishaw [23]
observed a daily use of refuges by baboons as anti-
predator tactics. However, the characteristic time scale at
the population level may be as long as a year, or even the
duration of a life cycle. This is of course not the case for all
populations, but is sufficiently general to warrant investi-
gation. From a mathematical modelling point of view,
such an assumption has important consequences because
it allows one to write a set of ordinary differential equa-
tions (ODEs) governing the sub-population variables with:
a) fast parts corresponding to processes going on at the
individual level; b) slow parts relating to processes going
on at the population level. Then mathematical methods
based on perturbation techniques allow one to reduce the
dimension of the system of ODEs and to obtain an aggre-
gated model governing a few global variables (for example
the total populations) at the slow time scale [21]. We also
refer to Poggiale [24] for continuous time models and to
Bravo de la Parra and Sanchez [25] and Sanz Lorenzo [26]
for discrete time models. In such a reduced global model,
few parameters occur in the slow model and the method
permits one to obtain relationships between global param-
eters and those governing the individual dynamics at the
fast time scale.

An important advantage of aggregation methods is not
only the dimensional reduction in order to simplify mod-
els, but also that it shows how the individual behaviour
emerges at the population level [7, 13, 27–31]. It is of
major importance to look for the effects of different indi-
vidual tactics or strategies at the population level in the
long run.

We refer to previous studies [21, 22, 24–27] for the
general aspects of aggregation methods. In this paper, we
focus on a particular case of a two-patch environment, in
order to illustrate how aggregation techniques proceed.
Population dynamics in a sink–source environment has
been considered in earlier contributions [32]. Two com-
peting species were considered in a two-patch environ-
ment, in the sense of two different types of patches. Two
populations that would otherwise exclude each other
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mutually on a single patch can coexist in a two-patch
system, each one occupying a patch from which the other
species is excluded [32]. Many papers consider evolution
time scale processes, such as the evolutionary stability of
sink populations (refer to [33–35] for recent works).

The consequences for population dynamics of migra-
tions or dispersal of a single−species population, distrib-
uted on a two-patch environment, have also been a sub-
ject of interest. For example, Pulliam [36] investigated the
consequences of active dispersal on the dynamics of
single-species populations. Gosselin [37] used a stochas-
tic model to study the effects of different dispersal patterns
on the extinction probabilities of a single-species popula-
tion. Gyllenberg et al. [38] studied the influence of migra-
tion on the stability of population dynamics. In the same
way, in this article, we apply an aggregation method in
order to investigate the effects of migration behaviours at
the individual level on the overall dynamics of a spatially
distributed population. The population is distributed
between a source and a sink, and at a fast time scale
individuals migrate between the two patches. The next
section is devoted to the presentation of the global model
and the general form of the aggregated model. In the
following section, we propose three increasingly more
complex strategies for the individuals. We analyse the
effects of these individual behaviours on population
dynamics on the long time scale. The article ends with a
general discussion about the usefulness of aggregation and
approximation methods for the study of the integration of
different ecological levels.

2. The model

The mathematical framework of the model is similar to
the one used by Auger and Poggiale [13]. We consider a
population of total density n�t �. This population is sub-
divided into two sub-populations ni�t �, i = 1,2 (figure 1).
The following system of two ODEs describes the growth of
the sub-populations:

�ε
dn1

dt = � k12 n2 − k21 n1 � − εr1 n1

ε
dn2

dt = � k21 n1 − k12 n2 � + εr2 n2

(1)

where k12 is the migration rate from patch 2 to patch 1 and
k21 from patch 1 to patch 2. In general, migration rates are
functions of local patch densities. In the next sections, k12
will remain constant and we shall study different density-
dependent rules for k21. ε is a small parameter � ε << 1 �,
meaning that the migration process takes place at a fast
time scale compared to the population growth evolving at
a slow time scale. We assume a linear growth for sub-
populations, i.e. linear growth functions on each patch,
patch 1 being a sink and patch 2 a source [33]. The source
is a patch on which food can be found and which has
necessarily to be visited by individuals to obtain resources.
In the sink, individuals cannot find enough resources to
develop, and we assume that animals regularly leave the
sink to go to the source, in order to obtain necessary
resources for survival and reproduction. The two patches
are close to each other.

As detailed in Auger and Poggiale [13], by assuming
that migrations go faster than reproduction, one can
approximate model (1) by an aggregated single equation
governing the total population density n = n1 + n2 on the
two patches. Since the micro-variables ni, i = 1,2 move
rapidly, we assume that they reach an attractor (equilib-
rium point, limit cycle, strange attractor, etc.). Roughly
speaking, at the fast time scale, we can replace these
micro-variables by constants depending on the attractor
nature and on the macro-variable n which is almost con-
stant at the fast time scale. In the next section, we present
examples where the fast dynamics possess an equilibrium.
We denote by vi the proportion of sub-population on patch
i and by vi

*
�n � the proportion of population i at the fast

equilibrium. These proportions depend on the migration
rates k12 and k21. It follows that the equation for the total
population density:

dn
dτ = ε� − r1 v1 + r2 v2 �n (2)

can be approximated by:

dn
dt = � − r1 v1

*
�n � + r2 v2

*
�n � �n + O�ε � ≈ r�n �n (3)

where t = ετ is the long time scale, τ the fast one and
r�n � = − r1 v1

*
� n � + r2 v2

*
�n �.

Note that this model provides relationships between the
population level and the individual level since the popu-
lation growth rate on the long time scale r�n � depends on
the behavioural dynamics at the individual level. In the
examples we present, we obtain explicit expressions for
the equilibrium proportions vi

*
�n �.

Figure 1. Individuals can go on two patches. k12 and k21 are the
migration rates from patch 2 to 1 and from patch 1 to 2, respectively,
the migration process taking place at a fast time scale.
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3. Effects
of different migration scenarios

We shall consider three kinds of migration, increasing
the complexity of the migration rates. In the first example,
we assume that the migration rates are constant. This
corresponds to random motion and the migration rates are
those of an average individual. In the second example,
migration rates are linear with respect to the local densi-
ties. This is the simplest way for modelling such behav-
iours as aggregative or repulsive ones. In the last example,
we make the migration rates more complex by considering
them as quadratic functions of the local densities. This is
the simplest way to build non-monotonous functions of
the local densities.

These three examples provide a sample of all possible
situations. Indeed, we present the case of density-
independent migration rates (random migrations), the case
where there is only one global density-dependent fast
equilibrium and the case where there are different possible
stable fast equilibria. The last case is interesting from a
general point of view since it shows how the total popu-
lation density may influence the individual behaviour,
with drastic consequences on the population dynamics. In
this example, growth functions are monotonically grow-
ing on each patch (see model (1)). However, at the popu-
lation level on the long time scale, the total population
density can oscillate.

3.1. Constant migration rates

Let us assume that the individuals migrate randomly.
The migration rates for an average individual k12 and k21
are constant. We give this simple example in order to
illustrate briefly the method. The fast equilibrium is
obtained from model (1) by neglecting the population
level � ε = 0 �, and by cancelling the differential equations
obtained with ε = 0. We obtain:

v1
* =

k12

k12 + k21
= 1

1 +
k21

k12

and v2
* =

k21

k12 + k21
= 1

1 +
k12

k21

(4)

Note that what matters here is the ratio between the

migration rates
k12

k21
, not the actual expression of the rates

separately. By replacing the equilibrium proportions in the
aggregated model (3) by their expression (4), we derived
the aggregated model:

dn
dt = rn (5)

where r =
− r1 k12 + r2 k21

k12 + k21
is the (constant) population

growth rate.
The sign of this growth rate depends on the proportions

on each patch at the fast equilibrium. If there are many
more individuals in the sink, the population will disap-

pear. If the major part of the population is in the source, it
grows exponentially.

3.2. Linear migration rates

The simplest case of density-dependent migration is
obtained when the migration rates are linear functions of
the densities. As shown with equation (4), what matters is
the ratio between the migration rates. Auger and Pog-
giale [13] considered a constant migration rate from the
sink to the source and a linear migration rate from the
source to the sink. This behaviour resulted in a logistic-like
growth model at the population level; that is, the growth
population was self-regulated. In this work, we consider
the opposite case: a constant migration rate � k12 = α �
from the source (patch 2) to the sink, while the migration
rate from the sink (patch 1) to the source � k21 = �n1 � is
proportional to the density of the sub-population located
in the sink. This corresponds to a repulsive behaviour for
the sink.

A straightforward calculation (based on (4)) gives the
following fast equilibrium proportions:

v1
* =

− α + �α2 + 4α�n
2�n and v2

* = 1 − v1
* (6)

The corresponding aggregated model reads:

dn
dt =

r1 + r2

2� � α − �α2 + 4α�n � + r2 n (7)

This equation has two steady states: the origin and a

positive equilibrium n* =
αr1� r1 + r2 �

�r2
2 . This equilibrium is

always unstable while the origin is a stable steady state.
Figure 2 illustrates the phase portrait in the plane �n1, n2�.
It is noteworthy that below a certain threshold, precisely
given by n*, the population goes extinct, while above it the
population grows to infinity. This dynamical behaviour
can be regarded as an Allee effect [2]. For an initial popu-
lation less than n*, the repulsive effect on the sink is weak.
Thus, individuals tend to stay in this unfavourable patch,
and the global population goes to extinction. Above the
threshold density n*, the repulsive effect becomes strong
and individuals escape the sink to the source; conse-
quently, the global population grows exponentially.

Levin [32] investigated competitive interactions as well
as the interaction between an abundant prey and a rare
predator in a two-patch environment incorporating
co-operative (Allee) effects. It was shown that for a large
mobility of prey, the equilibrium of the system becomes
unstable. This early work showed how the speed of migra-
tion can influence the dynamics of a predator–prey sys-
tem.

3.3. Quadratic migration rates

We end with an example where the fast part of model (1)
can exhibit two stable equilibria. In this case, at the short
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time scale, the proportions in each patch tend toward
given values that depend on the total population density.
Since this density moves slowly, we show that the fast
equilibrium can become unstable and the sub-
populations proportions ‘jump’ to another equilibrium.
Thus, the aggregated model corresponding to the initial
fast equilibrium is not valid any more, and another aggre-
gated model must be calculated. As the total population
density is always slowly changing, the new fast equilib-
rium can also become unstable and the sub-population
proportions ‘jump’ back to the first fast equilibrium. This is
a simple model in which we can analyse the effect of the
individual level on the population dynamics as well as the
feed-back effect of the population dynamics on the indi-
vidual level. The resulting effect, in this case, is oscillation,
observed on the long time scale, at the population level.
We shall explain this heuristic reasoning more precisely
from the following example.

Once again, we assume that k12 = δ is a constant and
k21 = αn1

2 + �n1 + γ is a quadratic function of the local
density in the sink. These migration rates should be inter-
preted as follows: at low density the individuals tend to
concentrate on the sink, while at high density, they tend to
aggregate on the source. Such a behaviour of changing
anti-predator tactics according to density has been, for
example, recently observed by Rangeley and Kramer [39]
for juvenile pollocks. These fishes use two alternative
anti-predator tactics (refuging or aggregation), involving
fast movements between two different habitats.

There are some mathematically necessary conditions
on the parameters to ensure that the migration rates
remain positive: α > 0, � < 0 and �2 < 4αγ. Figure 3 illus-
trates the shape of the function k21, which is denoted by
f� n1 �. First, we look for the equilibrium of the fast part of
equations (1), which satisfies the following equation:

δ� n − n1 � = � αn1
2 + �n1 + γ �n1 (8)

We denote g� n1 � = � αn1
2 + �n1 + γ � n1 = f� n1 �n1, a

cubic function, which has a zero at n1 = 0. The solutions

of equation (8) are obtained by the intersection between
the curve of g and the straight line defined by the left-hand
side. For certain parameter values, these curves can have
three intersection points, leading to three steady states, as
illustrated in figure 4.

Figure 5 shows a Runge-Kutta simulation of the phase
portrait of system (1), by using a quadratic function
f� n1 � = 21n1

2 − 21n1 + 5.5. This figure shows that a limit
cycle emerges at the population level. It is noteworthy that
the choice of an initial condition in the upper part of the
phase portrait of figure 5 leads to an unbounded growth.
Figure 6 shows the periodic variations of the patch densi-
ties n1� t � and n2� t � calculated from system (1), with the

Figure 2. Computer simulation of trajectories obtained by the Runge-
Kutta method using the density-dependence function f� n1 � = 1.5n1.
Growth rates are r1 = 0.2 and r2 = 0.1, and the migration rate from
patch 2 to patch 1 is k12 = 0.4. The parameter ε is equal to 0.5.

Figure 3. General shape of the density-dependent migration rate
k21 = f� n1 �. Here, we chose f� n1 � = 21� n1 �

2 − 21n1 + 5.5.

Figure 4. The fast equilibrium points are found at the intersection of
g� n1 � = n1 f� n1 � and the line k12� n − n1 � with a negative slope
− k12. Two cases can occur: a unique stable equilibrium point (not
shown); or two stable equilibrium point � n1

*1 and n1
*3

� with an
unstable one � n1

*2
�.
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density-dependence function of figure 3 and an initial
condition leading to the limit cycle.

With such a density-dependent migration rule, we find
again two kinds of global population dynamics, depend-
ing on a threshold density. Contrary to the previous case
(figure 2) below this threshold, the population does not go
extinct, but a stable limit cycle occurs (figure 5). Above
this threshold, the strong repulsive migration from the sink
causes, as previously, the exponential growth of the global
population.

The hysteresis loop of figure 5 comes from the switch
between the two stable fast equilibria. The first equilib-
rium corresponds to many individuals on the source and
few on the sink, while the second one corresponds to the
reverse case. From the first fast equilibrium, the total
population grows slowly. In particular, the density n1 is
low but slightly increases, involving a sudden switch in the
second fast equilibrium due to the aggregative migration

behaviour of individuals on the sink. The total population
then slightly decreases, and the repulsive effect of migra-
tion pushes the individuals to run away from the sink to the
source, ending the limit cycle.

Note, as shown by the Runge-Kutta simulation on figure
7, that another case can occur, corresponding to a unique
asymptotically stable equilibrium point. Such a stable
equilibrium point for the whole system corresponds to an
equilibrium point for both the fast and the slow systems. In
this case, there is again a threshold density, leading to
either the exponential growth of the total population, or
constant densities for n1 and n2. With an initial condition
below this threshold, the total population dynamics exhib-
its a stable equilibrium point.

4. Conclusion

As an example of the use of aggregation methods, our
model gives the possibility of describing oscillations of the
total population density in a patchy environment. Such
periodic oscillations have been observed for lemmings,
rodents or insects [40], but are also described for host–
parasitoid [41, 42] or prey–predator systems [43].

Modelling such periodic emergence of a single popula-
tion usually involves delay equations [40]. Our modelling
approach provides another possibility of cyclic variations
of the total population as the result of the density depen-
dence in the migration process. We showed that aggrega-
tion on the sink patch at low densities combined with
aggregation on the source patch at high densities can lead
to periodic oscillations.

More generally, we showed how density-dependent
migrations could have, from a qualitative point of view,
important consequences for the dynamics for the total
population. In fact, the individual behaviour, here the

Figure 5. Computer simulation of an hysteresis cycle obtained by the
Runge-Kutta method using the density-dependence function
f� n1 � = 21� n1 �

2 − 21n1 + 5.5. Growth rates are r1 = 0.2 and
r2 = 0.1, and the migration rate from patch 2 to patch 1 is k12 = 0.4.
The parameter ε is equal to 0.5.

Figure 6. Time variations of the patch sub-populations. Computer
simulation of an hysteresis cycle obtained by the Runge-Kutta
method using the density-dependence function
f� n1 � = 21� n1 �

2 − 21n1 + 5.5. Growth rates are r1 = 0.2 and
r2 = 0.1, and the migration rate from patch 2 to patch 1 is k12 = 0.4.
The parameter ε is equal to 0.5.

Figure 7. Computer simulation of trajectories obtained by the
Runge-Kutta method using the quadratic function
f� n1 � = 21� n1 �

2 − 19.4n1 + 5.5. In this case, the trajectories tend to
a unique asymptotically stable point. Growth rates are r1 = 0.2 and
r2 = 0.1, and the migration rate from patch 2 to patch 1 is k12 = 0.4.
The parameter ε is equal to 0.5.
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migration behaviour, can strongly determine the growth
rule for the total population, either decaying to zero,
growing to infinity, tending to an asymptotically stable size
or exhibiting periodic oscillations.

This work shows that population dynamics have to be
considered in terms of coupling between the individual
and the population levels. A change of the individual fast
model makes different slow growth models emerge for the
total population. This can be regarded as a bottom-up
coupling, that is the effect of a lower level on a more global
one.

On the other hand, the fast equilibrium itself depends
on values of the global variables, governing the dynamics
of the system at the slow time scale. These global variables
slowly change with time, and for example can provoke the
loss of stability of a fast equilibrium. Such a coupling can
be regarded as a top-down coupling, that is the effect of
changes at the population level on the individual level.

In fact, both types of coupling (bottom-up and top-
down) may occur at the same time. The overall dynamics
of the system is the result of the coupled dynamics in each
of its levels, the individual and the population. Integration
of the different levels of organisation must then be
achieved by investigating this dynamical coupling of the
slow and fast processes going on at the ecological levels.

Mean field theory can also be used to describe random
motion of individuals in space and to obtain general
spatial patterns [44]. The moment closure method is also
powerful in providing moments of different orders, for
spatially distributed populations, average density, vari-
ance, etc. This method has been applied for species com-
peting for space [45, 46].

Different time scales must be taken into account accord-
ing to processes going on at the different levels of an
ecological system. Slow–fast models are thus very good
candidates for the study of interactions between ecologi-
cal levels. Several contributions investigated slow–fast
dynamics in the context of predator–prey systems [47–
49]. We also refer to spatially distributed predator–prey
models with density-dependent migrations [7, 14, 31, 50].

A further assumption is made regarding the choice of
global variables, which are first integrals of the dynamics
of the fast models [13, 20, 21]. In other words, the fast
models are conservative. As a consequence, the variables
that characterise the global dynamics are not defined in an
arbitrary way, but they correspond to invariant quantities
for the internal dynamics of the lower levels. The different
levels of organisation of the system are associated with
different levels of invariance.

The spatial structure of the environment can strongly
influence the dynamics of the populations. For example,
the Nicholson and Bailey model that describes the dynam-

ics of a host–parasite system is unstable [51]. The system
undergoes amplified oscillations leading to extinction of
the system. However, Hassell et al. [52] have shown that
when different patches are connected by migrations and
when the size of the network increases, the host–parasite
system does not go extinct and can maintain itself. Similar
results have been obtained by Durett and Levin [53] for a
hawk–dove system. These examples show that spatial
connections can have important and non-trivial conse-
quences on the overall dynamics of the system.

Slow–fast models also allow one to take into account
the dynamics of spatially distributed populations such as
shown in this article. However, the method can be used
not only in the case of two patches, but also in the case of
a complex network of interconnected patches. This
method appears then very powerful, as it allows one to
aggregate a large number of patch sub-populations into a
single global variable (the total density summed over all
patches). Such a model was performed to describe the
dynamics of a trout population in an arborescent river
network of 15 patches [29, 30].

An interesting perspective is to use the method for
different types of large networks involving many patches
and aimed at representing different types of environments:
a river network, a lake, a set of interconnected meadows,
etc. Aggregation methods can help in taking into account
complex spatial and realistic environments, and allow one
to derive a low dimension model governing the dynamics
of the total system in the long run. The required condition
is that the individual motion in the network is faster than
the reactions occurring locally.

The aggregation method can also be used to study
effects of different individual tactics described by games
on the overall dynamics of the populations. Such a work
was performed in the case of a domestic cat population in
which the effect of individual aggressiveness on the total
equilibrium density of the population was investi-
gated [28].

Aggregation techniques present general methods for
integrating biological levels of organisation. This goal can
be achieved by understanding how the lower levels influ-
ence the dynamics of the global system, and inversely how
the feed-back exerted by the upper levels act on local
dynamics. Then, the whole system must be seen as a
hierarchically organised system involving several biologi-
cal levels [15]. Its evolution is the result of the coupled
dynamics in each of its levels.
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