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Abstract

Modelling ecological systems implies to take into account different ecological levels: the individual, population,
community and ecosystem levels. Two large families of models can be distinguished among different approaches: (i)
completely detailed models involving many variables and parameters; (ii) more simple models involving only few state
variables. The first class of models are usually more realistic including many details as for example the internal
structure of the population. Nevertheless, the mathematical analysis is not always possible and only computer
simulations can be performed. The second class of models can mathematically be analysed, but they sometimes
neglect some details and remain unrealistic. We present here a review of aggregation methods, which can be seen as
a compromise between these two previous modelling approaches. They are applicable for models involving two levels
of organisation and the corresponding time scales. The most detailed level of description is usually associated to a fast
time scale, while the coarser one rather corresponds to a slow time scale. A detailed model is thus considered at the
individual level, containing many micro-variables and consisting of two parts: a fast and a slow one. Aggregation
methods allow then to reduce the dimension of the initial dynamical system to an aggregated one governing few
global variables evolving at the slow time scale. We focus our attention on the emerging properties of individual
behaviours at the population and community levels. © 2000 Elsevier Science B.V. All rights reserved.
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sider three ecological levels: the individual, the

1. Modelling ecological systems: state of the art : .
population and the community-ecosystem levels.

with a special emphasis on integrating the

ecological levels

In ecological modelling, one must roughly con-
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The dynamics of an ecological system entails the
co-evolution of the three levels, and it seems
necessary to develop methods for integrating the
different ecological levels.

This implies for example incorporating the indi-
vidual behaviour in population dynamics models.
A first attempt was made in the field of statistical
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physics, with the early work of Kerner (1972),
who noted that Lotka—Volterra equations
are conservative and can be rewritten as a
Hamiltonian system. The consequence is that a set
of many interacting species obeying Lotka—
Volterra dynamics can be regarded as a
Gibbs ensemble. Thus, it is possible to obtain
functions expressing the probability that
a population density belongs to a given interval
(n,n + dn). Unfortunately, such an approach
can only be used for an even number of
interacting species, and the fact that the Lotka—
Volterra model is not structurally stable
(Arrowsmith and Place, 1992, p. 185), can cause
problems.

A similar approach can be found in Demetrius
(1983) for discrete time models describing the
dynamics of age-structured populations by use of
Leslie matrix models. The population entropy is
calculated, based on the assumption that ecologi-
cal systems tend to maximise it.

The physics representation to integrate the bio-
logical levels is justified and has been widely in-
vestigated. In particular, mean fiecld theory has
been used to describe random motion of individu-
als in space and to obtain general spatial patterns
(Levin and Pacala, 1997). The moment
closure method is also powerful in providing mo-
ments of different orders, for spatially distributed
populations, average density, variance.... This
method was applied to species competing for
space (Pacala and Levin, 1997; Gandhi et al.,
1998).

A rather similar point of view is considered in
structural dynamical models (Jorgensen, 1986). A
global index, the exergy, allows to determine the
set of connections between the different compart-
ments of a system that maximise the exergy func-
tion. The maximum of exergy corresponds to a
network adapted to the actual environmental
conditions.

Likewise, slow—fast models are widely used in
ecological modelling. The main reason is from the
presence, in ecological systems, of significantly
different orders of magnitude (of the parameters
as well as the variables). Slow—fast models are
good tools for reducing the dimension of dynami-
cal systems and have been used for example to

model food chains (Kooi et al., 1998) or various
ecological systems (Rinaldi and Muratori,
1992a,b; Muratori and Rinaldi, 1992; Rinaldi et
al., 1996; De Feo and Rinaldi, 1998).

The complexity of a system of ordinary differ-
ential equations is not easy to define. Ecological
systems are considered complex systems. Indeed,
an ecosystem is a set of a large number of
interacting species in a fluctuating environment.
Real ecosystems and communities exhibit
complex graphs of interactions between the spe-
cies. Cohen et al. (1990) give many real examples
of community structures showing complex net-
works of connected interacting populations (see
also Logofet, 1993). Species are also composed of
individuals with different ages. Individuals do
many activities such as looking for resources of
different types, taking care of the juveniles and so
forth. Thus, to be realistic, each population
should be divided into sub-populations, corre-
sponding to ages, behavioural strategies associ-
ated to phenotypes, individual states (ill or safe),
etc.

On the other hand, individuals can move be-
tween different spatial patches to feed or to de-
fend territories. Physical conditions of the
environment fluctuating with seasons (often ran-
domly) also have a strong influence on the dy-
namics of the populations and the community.
Thus, in order to take into account all these
aspects in the dynamics of a community at all
levels, we should consider a complicated model
involving many variables, that is a great number
of degrees of freedom and parameters. Such ‘big
models’ are very difficult to handle, and only
computer simulations can be performed. More-
over, sensitivity to initial conditions and to
parameter values is in general unknown, and the
model only provides computed time series for
each variable that correspond to a particular set
of conditions.

Nevertheless, ‘big models’ of ecosystems have
been considered and studied. The book by Dean-
gelis (1992) shows many examples of models for
ecosystems and communities. These models are
already a schematic representation of the real
ecosystem, although many compartments are con-
sidered for biomass. They can be numerically
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simulated and they provide interesting results
that can be compared to real observed time
series.

A contrary approach in ecological modelling is
to build models involving only few variables. The
prototype of such models is the classical Lotka-—
Volterra model and all related models in
which a few number of variables are considered,
as for example the total density of preys and
predators (Murray, 1989; Edelstein-Keshet, 1988).
Such simple models can be analysed and results
can mathematically be proved, such as the exis-
tence of equilibrium points, periodic solutions...
But, they are often too simple and not realistic
enough to be of interest for biologists, who con-
sider them as a caricature of the real ecological
system.

Aggregation methods are a compromise
between big models and simple ones. They can
be performed when the system involves
different time scales, a fast one at the individual
level and a slow one at the population or the
community level. At the most microscopic level
(for example, the individual level), one considers a
complicated detailed model involving many
state variables and parameters. Then, by taking
advantage of the two time scales, it is possible to
build up, by aggregating some variables, a re-
duced model involving only a few global vari-
ables, varying at a slow time scale, and describing
the dynamics at the population or community
level.

In this article, we present a review of
aggregation methods that are devoted to the re-
duction of the dimension of dynamical
systems. We shall also present an example of
aggregation of variables in population dy-
namics. This example relates to a prey—predator
model in a heterogeneous environment of
interconnected patches. This model inves-
tigates the effect of individual decisions of preys
to leave a patch where predators can attack
them, on the global stability of the community in
the long run. For simplicity, the model is
applied to the case of two patches, but
could easily be implemented for a large set of
connected spatial patches organised in a complex
network.

2. Aggregation and emergence in ecology

One of the major problems in modelling of
ecological systems is a result of the fact that many
variables are involved in the evolution of such
systems and cannot be omitted without an impor-
tant loss of information. Many variables and
parameters seem necessary to describe the dynam-
ics of a given system, and it is difficult to decide
about the level of detail which is really relevant.
However, one would need rigorous methods for
detecting which variables are really relevant for
the description of the system, and which ones can
be neglected.

This is the problem of size reduction, usually
dealt with by qualitative considerations, based on
assumed properties of the system. In rare advents,
reduction will be justified by mathematical rea-
soning and computations. Aggregation consists of
extracting, from an initial micro-system, a small
macro-model (or aggregated model) governing a
few global variables. The main goal of such a
technique is to obtain an aggregated system sim-
pler and ecasier to handle analytically than the
original one.

Perfect aggregation is the name given to the
simplest case, when a lower dimension dynamical
system can be associated to the original one, and
accordingly each solution of the original system is
associated—in some functional way—to a solu-
tion of the aggregated one. Examples of perfect
aggregation in ecology can be found in Iwasa et
al. (1987), as in the case of modelling an age-
structured population. Iwasa et al. (1987) studied
the conditions that are necessary to perform per-
fect aggregation. Perfect aggregation supposes
very particular values of the parameters. Note
also that Gard (1988) has given perfect aggrega-
tion methods for stochastic models.

As perfect aggregation is generally not possible,
it is very useful to investigate a more general
aggregation. This may be called ‘approximate ag-
gregation’ as opposed to ‘perfect aggregation’.
Starting with a complex differential system, the
aim is to construct a simpler system, solutions of
which approximate the solutions of the initial
system. The problem is: how to build a macro-
model from an initial micro-model such that the
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solutions of both systems are not in functional
relationship but a sort of approximate relation-
ship can be demonstrated. For example, one
might define a measure or a distance between the
solutions of the micro-system and the macro-sys-
tem. This measure should be maintained small
enough to consider that the solutions of both
systems are almost the same at least during a
certain time. Refer to Iwasa et al. (1989) for more
details.

3. Emergence of global properties at the
macro-level

Variable aggregation methods in dynamical sys-
tems with different time scales take advantage of
the existence of these different time scales associ-
ated to the ecological levels in order to simplify a
complex model. Aggregation methods have been
widely performed for continuous time models
(Auger and Roussarie, 1994; Auger and Poggiale,
1996, 1998), as well as for time discrete models
(Bravo de la Parra et al., 1997; Bravo de la Parra
and Sanchez, 1998). A special issue in Mathemat-
ical and Computer Modelling (1998) was devoted
to aggregation techniques and their applications
to population dynamics (Antonelli and Auger,
1998).

A micro-system is structured into a certain
number N of subsystems. In this way, we can
regard this system as hierarchically organised
(Auger, 1989; O’Neill et al., 1986). The micro-sys-
tem is described by a set of ordinary differential
equations (ODE) governing many variables called
the micro-variables.

Let i be the index for the micro-variables be-
longing to the subsystem o. In the case of popula-
tion dynamics, the micro-variables n?(¢) are the
numbers or densities of individuals of sub-popula-
tion 7 belonging to population «. The micro-sys-
tem reads then as follows:

d n?
&

17 =/fin',n%...n") +eFi(n', 0% . on") (1)
with n* = (n{, n3, ..,n% ) and ¢ a small parameter
(e < < 1). Functions f¥ and F¥ correspond respec-
tively to fast and slow processes.

One can build up an aggregated model (refer to
Auger and Benoit (1993), Poggiale (1994), Auger
and Roussarie (1994) for more details) at the slow
time scale ¢, governing a few global variables that
are for example the total populations of each
sub-system:
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i
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in which v¥*=n*"/n* represents the individual

proportions in each sub-population at the fast

equilibrium (denoted by a star subscript).

The dynamics of the aggregated model (2) is a
good approximation of the dynamics of the mi-
cro-model (1), as it can be proved that the error is
of order e.

The aggregation method is not only useful be-
cause it reduces the dimension and the complexity
of the micro-system. It is also interesting, as it
makes new global properties emerge for the dy-
namics at the macro-level.

We shall now discuss coupling effects between
the slow dynamics corresponding to the aggre-
gated system and the fast dynamics corresponding
to the sub-population system. At the fast time
scale, the frequencies tend to a stable equilibrium.
e When the fast model is linear, the frequencies

tend to constant values (Auger and Poggiale,

1996). However, a change in the parameter

values of the fast model modifies the equi-

librium frequencies v#". This in turn changes
the parameters of the aggregated model, as if
for example individuals select a new behaviour.

Jorgensen (1999) proposes a similar process

about the change of parameter sets adapted to

a change of environmental conditions.

e When the fast functions f7 are non-linear, the
equilibrium frequencies v?* are generally func-
tions of the slow variables (n!, ..., n%"), and are
not constant any more. They are now functions
of the total population sizes and we must write
them v#(n!, ..., n"). This has an important
consequence for the macro-model. Indeed, the
substitution of the sub-populations by n* x
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v¥*(n!, ...,n") into functions F* will now lead
to a new macro-system:

dn”
dt
NZ
* *
Y Fxui'(n', .,n™n', ot (n', ..., n™"n?,
i=1
LoVt M, L) (3)

This new macro-system includes new terms with
respect to the slow part of the micro-system,
which result from the density dependence in the
new equilibrium frequencies. The emergence of
these new terms can be seen as a coupling between
the fast and the slow dynamics. For each set of
values in the slow macro-variables, the fast system
reaches a different equilibrium, which differs also
for each set of macro-variables. Hence, this pro-
cess induces an emergence in the approximated
macro-system. As a consequence, different fast
models coupled to the same slow model can lead
to different global dynamics.

4. Use of aggregation method to model a
prey—predator system in a heterogeneous
environment

When modelling host-parasite systems, it is nec-
essary to take into account the individual be-
haviour of the animals. Indeed, it is observed that
the parasite and its host co-evolve. For example,
juvenile treespine (Gasterosteus aculeatus) and
blackspotted sticklebacks (Gasterosteus wheat-
landi) remain in groups when they try to lower

n 1 ');
! ,
B
Patch | Patch 2

Fig. 1. Flowchart of the model of prey’s patch selection
induced by predators.

their risk of being parasitized by the crustacean
ectoparasite Argulus canadensis (Poulin and
Fitzgerald, 1989a,b). The trematode parasite Di-
crocoelium dendriticum can provoke aberrant be-
haviour in infected ants and make them available
for ingestion by grazing sheep (Romig et al., 1980,
cited in Combes, 1991).

In this study, we shall consider a host-parasite
model, incorporating individual behaviour of the
hosts. The model is based on results obtained by
Poulin and Fitzgerald (1989a,b), concerning
blackspotted sticklebacks and their crustacean ec-
toparasites. Two spatial patches or habitats can
be considered for fishes. A first one is near the
surface and contains vegetation, the second one
corresponds to deeper water and is open. The risk
of being attacked by parasites is much larger in
the surface habitat, but this patch provides food
and resources. The second habitat is safe from
parasitism but fishes cannot find resources and
not enough food to remain all the time in that
patch. It is observed that fishes can live in both
habitats, even if parasites are found in the surface
patch.

The same model can also be thought for prey—
predator systems in a two patches environment.
On a first patch, preys can grow but are vulnera-
ble because of an easy attack by the predators
hunting on that patch; on the second patch, preys
are safe from predation (or mostly safe). Hence,
preys can go on the second patch considered as a
refuge, but migrate also on the first patch where
food and water are available.

4.1. Presentation of the complete model

Let n,(¢) and n,(¢) be prey (or host) densities on
both spatial patches, corresponding for example
to the surface patch and the deep water patch
respectively in the case of sticklebacks and their
ectoparasites. Let p,(z) be the predator (or para-
site) density on patch 1. Predators (or parasites)
are present in patch 1 only, while preys (or hosts)
can move and migrate from patch 1 to patch 2
and conversely. Preys are assumed to grow ac-
cording to a logistic law on each patch character-
ised by a carrying capacity K; and a growth rate r,
on patch i. We assume a Lotka—Volterra func-
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tional response for the predation relationship on
patch 1, and we denote a the predation rate
(/predator/prey/time unit). We call ¢ the conver-
sion rate of prey biomass into predator biomass,
and u is the natural death rate of predators. The
model also takes into account the migration of
preys between the two patches, according to the
rule shown in Fig. 1. Finally, we make the hy-
pothesis that migrations go faster than growth
and predation processes on each patch. Two time
scales are thus involved in the model, a fast one
for prey migration (each day for example) and a
slow one for growth and predation.

The complete model, describing both migration
and reproduction processes, can then be written
as a set of three ODEs:

-

dn — n

gd—ll = (kny, — kn,) + 8<F’]I’l]<1 _Kll> — anlpl>
dn — n

sd—; = (kn, — kn,) + 8r2n2<1 — KZ)

d

8% = &(— up, + canyp,)

4)

where ¢ is a small parameter, and k and k are the
prey migration rates. In a previous work (Morand
et al., 1998), k and k were assumed constant, and
it was shown that model (4) can be aggregated
into a macro-model with only two equations gov-
erning total prey and predator densities. The anal-
ysis of the model showed that only two cases
might occur according to parameter values:

e The predator population becomes extinct,
while the prey population tends to a constant
density;

o The prey and the predator populations coexist
at constant densities.

In a further contribution (Chiorino et al.,
1999), was considered the case of a prey migration
rate, k from patch 1 to patch 2, which depends on
the predator density on patch 1. Hence, it was
assumed that k = ap, with o, a positive constant.
Preys are then supposed to leave patch 1 at a rate
increasing with the number of predators on that
patch. Such an assumption is equivalent to a
repulsive effect exerted by predators on preys. The

mathematical analysis of the aggregated model

has shown that the two previous cases may also

occur, but that a new situation can arise:

e Extinction of the predator population and co-
existence of preys and predators can occur at
the same time. There is a separatrix in the
phase portrait, and according to the initial
conditions on both sides of this separatrix,
either the predator goes to extinction or both
the prey and the predator coexist.

In the present work, we shall assume a rein-
forced repulsion effect of the predator on the
prey, that is k = op3. Instead of leaving patch 1
with a rate simply proportional to the predator
density as in Chiorino et al., the rate is now
proportional to the square of the predator den-
sity.With this assumption, the complete model
now reads:

dn n
ed—tl = (kn, — xpin;) + [r1n1<1 — ki) — anlplj|

2

dn

dt
J4

dt

A

e—— = (ap3in, — kny) + er2n2<l _n
K,

d

e—— = ¢&( — up, + can,p,)

-

®)
4.2. The aggregated model

Let N=n, +n, and P=p, be the aggregated
variables, i.e. total prey and predator densities
added on both patches. The first step of aggrega-
tion consists of looking for the fast equilibrium of
the model that is for the prey migrations. This
fast equilibrium is obtained when the two migra-
tion flows are equal kn, = aP?n,.

As migration is conservative (the total prey
density NV is a constant of motion for migrations),
one can substitute N —n, for n, in the previous
equation. After some algebra, we obtain the prey
density at the fast equilibrium in terms of the total
prey and predator densities:

. kN
I’ll=72

k+aP

O!P2N (6)
*=4
i k + aP?
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N
a
. P
N
b
N
P

Fig. 2. Nullclines and flow directions corresponding to model
(7) in the case K; < u/ac in the plane (P,N). (a) Two steady
states; (b) Four steady states.

The star subscript denotes the fast equilibrium.
At high density of predators, preys avoid patch 1
and concentrate on patch 2. It can be easily
shown that this fast equilibrium is asymptotically
stable, that is, a condition needed in order to
proceed to aggregation (Auger and Roussarie,
1994; Poggiale, 1994) holds.

The aggregated system is obtained by adding
the two prey equations and by substituting the
previous fast equilibrium (6) in the prey and
predator equations:

p

dN__ N Nk

dt  k+aPy"' K, k + aP>

N k

3 Pl1l———>|—akP

+ ro < K2k+ocP2> a }

dp k

—— =Pleca——N— 7
| dt <Cak+ocP2 ﬂ) ™

This aggregated system is an approximation of

the complete system. It is valid when ¢ is small
enough (typically 0.1 or less) and when the aggre-
gated model is structurally stable. This model is
very different from the local model on each patch,
which assumes a logistic growth of the prey, a
constant mortality of the predator and a Lotka—
Volterra functional response. It shows how the
density-dependent fast migrations, at the individ-
ual level, emerge at the population level. The form
of the model is not only modified, but as we shall
see in the next section, new dynamical properties
are also emerging.

4.3. Dynamics of the aggregated model

In this section, we shall consider the phase
portrait in the (P, N) plane. Equilibrium points of
the aggregated model can be obtained by looking
to the nullclines of the system.

N
a
N
] p
N
b
] P

Fig. 3. Nullclines and flow directions corresponding to model
(7) in the case K, > p/ac in the plane (P,N). (a) Three steady
states; (b) Five steady states.
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separatrix .
P Coexistence

Node sink

P

Spiral sink

Fig. 4. Phase portrait corresponding to the case of Fig. 3b.

e The dP/ds =0 nullclines are given by the next
two functions:

P=0
()
(AN=L2p2 £
cak ca
o The dN/dt =0 nullclines are given by the next
two functions:

N=0
K Ky(k 4 aP?)(ryaP? — akP +r,k)

B):N =
(B) K ryo?P* + Kor k>

©)

The positive quadrant is positively invariant,
and the equilibrium points are found at the inter-
section of both types of nullclines (A) and (B).
Four possibilities can be observed according to
parameter values, that is to relative positions of
the nullclines (Figs. 2 and 3). (0, 0) and (0, K,) are
equilibrium points in the four cases, and if K| <
I /ac, situations of Fig. 2 can occur, while those of
Fig. 3 are possible when K, > u/ac.
® When K, <u/ac, two or four equilibrium

points can exist in the phase portrait:

o In the case of Fig. 2a, (0, 0) and (0, K,) are

the only equilibrium points. As indicated by
the flow directions on the nullclines, the

origin is unstable, and the prey population
tends to its carrying capacity of patch 1,
while the predator is excluded.

O In the case of Fig. 2b, two more equilibrium
points exist in the positive quadrant. Flow
directions show that (0, 0) is unstable and
(0, K)) is stable. Among the two other equi-
librium
points, the one at high density is stable and
the one at low density is a saddle point.
Thus, there is a separatrix and according to
the initial condition, either the predator
population goes to extinction or the prey
and predator population coexist.

e When K, > pujac, three or five equilibrium
points can exist in the phase portrait, and (0, 0)
and (0, K,) are always unstable (saddle points).
Two types of situations can occur:

o Fig. 3a: There is only one stable equilibrium
point in the positive quadrant, which corre-
sponds to preys and predators coexisting at
constant densities.

o Fig. 3b: There are three equilibrium points
in the positive quadrant, two stable ones
and a saddle point between them. According
to the initial densities and with respect to
the sep-aratrix shown on Fig. 4, the prey
and the pred-ator coexist either at low densi-
ties or at high densities.

Fig. 4 presents a Runge—Kutta simulation of
the aggregated model in the case corresponding to
Fig. 3b. The phase portrait of Fig. 4 is completely
new compared to those obtained in previous
works (Morand et al., 1998; Chiorino et al.,
1999). The dynamics is very interesting on a bio-
logical point of view:

e If the system is initially at the high-density
equilibrium, capture of prey (by hunting for
example) can push the population state
through the separatrix and then to the low-
density equilibrium.

e If the system is initially at the low-density
equilibrium, a flow of migrants, coming from
outside, can again push the population state
through the separatrix and switch to the high-
density equilibrium.
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This situation of switching between two stable
equilibrium points has interesting consequences in
terms of management of the populations. In the
case of host-parasite systems, where both popula-
tion coexist at high density, a treatment of the
parasitism (by a chemical substance for example)
might lead to a less high prevalence of the infec-
tion in the total population.

5. Conclusion

The model presented here was detailed as an
illustrative example in the simple case of
two patches. It shows how the individual be-
haviour can lead to complex dynamics for the
total population. However, aggregation methods
can also be used for complex networks of
interconnected patches involving many sub-
populations. Such a model was developed in the
case of discrete time models (Leslie type) for
a fish population (the brown trout) in an
arborescent river network (Charles et al.,
1998a,b). In this work, the model describes the
global population dynamics in a river network of
15 patches: demographic process takes place in
each patch and individuals are supposed to mi-
grate many times per year between patches. The
model then allows the quantification of the effects
of some changes in the structure of the network
(because of dams or channels) on the global dy-
namics.

The aggregation method is a convenient tool to
study complex systems composed of a large num-
ber of elements and presenting a hierarchical
structure. This method was applied to prey—
predator models in a heterogeneous environment.
In particular, the effect of density-dependent mi-
gration decisions of preys and predators on the
structure of the global prey—predator model was
studied (Auger and Poggiale, 1996; Michalski et
al., 1997; Bernstein et al., 1999). The method was
also used to study the effects of different individ-
ual tactics, hawk, and dove at the fast time scale,
on the global growth of a cat population (Auger
and Pontier, 1998). And it is possible to imple-
ment aggregation methods in order to simplify
community graphs (Kooi et al., 1998). Finally, the

method was developed in the case of discrete
models (Bravo de la Parra et al., 1995).

Future developments are necessary to incorpo-
rate individual behaviour into population dynam-
ics as well as the structure of the community.
This could be carried out by considering
three time scales or more. Stochastic processes
should also be added in the models. Recent devel-
opments have been carried out along this line in
stochastic discrete time models (Sanz Lorenzo,
1998).
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