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Abstract

This paper is devoted to the study of food chain models under batch and chemostat conditions where nutrient

recycling is taken into account. The food chain is formed by a nutrient and two populations, prey and predator

(producers and consumers). Species at both trophic levels digest their food source only partly. The unusable part of the

food is ejected in the reactor as faeces together with metabolic products. The excreted material together with death

material, detritus, is decomposed and this gives the recycling of the nutrient. In closed (batch-type environment) systems

the elemental matter needed by producers must be provided through recycling where light energy from the environment

supplies the necessary energy that fuels the life processes. In open (chemostat-type environment) systems this energy is

added to the system via the chemical energy stored in the organic compounds in the inflow. Bifurcation analysis is used

to study the effects of material recycling on the long-term dynamic behaviour of these simple food chains. An

aggregation method is developed for situations in which each trophic level is characterized by differing time scales. This

allows us to reduce the dimension of the model which gives good approximations after the fast transient. We will show

that first-order approximations are needed in order to get the same qualitative long-term dynamics for both the full and

the reduced model. # 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently it is found that effects of nutrient

recycling plays an important role to the stability

of ecosystems (DeAngelis, 1992). With nutrient

recycling, waste-products and dead organisms

from the biotic trophic levels are mineralised,

possibly by a decomposer, into the abiotic nutri-

ent. In the literature closed (batch-type environ-

ment) and open (chemostat-type environment)

ecosystems are analysed.

In a batch reactor system the biological compo-

nents and the nutrient are added to a closed system

and thereafter the system is self-sustaining. In

Nisbet and Gurney (1976) an elucidating model

for carbon cycling in a closed ecosystem is

described. In that model respiration products are

converted directly to inorganic material, carbon
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dioxide CO2, at a fixed rate proportional to the
biomass of the population. This implies the

assumption that the presence of decomposers

does not significantly influence the rate of provi-

sion of material for decomposition and that

decomposition is sufficiently fast to neglect time

delays in the decomposition process.

In a chemostat there is a continuous flow of the

nutrient through the reactor containing the popu-
lations. Chemostat conditions might resemble

some ecosystems in a very simple model for a

lake or other aquatic habitats, see also DeAngelis

(1992). A nutrient�/phytoplankton�/zooplankton

system is analysed in Beretta et al. (1990), Ruan

(1993, 2001), where the nutrient is regenerated

from dead biomass by bacterial decomposition.

The dynamics of the decomposer is not modelled,
however, a distributed time lag in the recycling is

introduced to model time required to regeneration

of the nutrient.

In this paper the production of degradable

material at each trophic level occurs as side effects

of three biological processes. These three processes

involved in the living of each population are the

assimilation, maintenance and growth process
(Kooijman, 2000). Only a part of the food ingested

by species is assimilated and the unusable parts are

ejected in the reactor in the form of faeces.

Subsequently, a part of the assimilated material

is used for synthesis of new biomass and the other

part forms products, associated with the main-

tenance and the growth process, that are excreted

in the reactor. With our model formulation
products are formed at two rates as waste-pro-

ducts by the three processes. The metabolic waste-

products are assumed to be degraded instanta-

neously into nutrients. The other products such as

faeces are degraded exponentially at a fixed recycle

rate. These products yield extra state variables for

each trophic level. Remark that, as in the papers

mentioned sofar, the decomposers are not mod-
elled explicitly.

One of our objective is to study the effects of

material recycling on the long-term dynamic

behaviour of these simple food chain. We perform

a numerical bifurcation analysis for the chemostat

case. The results are presented in bifurcation

diagrams where regions in the parameter space

are distinguished where qualitatively different
asymptotic dynamics, equilibrium or cyclic beha-

viour, occurs.

Another aim is to obtain a better insight in the

dynamical properties of the system by reducing the

dimension. We use aggregation methods for this

purpose. With perfect aggregation new global

variables are defined which allows one to describe

the dynamics of the system in a condensed way
(Iwasa et al., 1987, 1989). In previous papers, we

used perturbation techniques to perform approx-

imate aggregation which have been applied to

complex ecological models with different time

scales (Auger et al., 2000a). The method works

when the fast system possesses a stable equilibrium

(Auger and Poggiale, 1996) and also with a stable

limit cycle (Poggiale and Auger, 1996). Here we
shall take advantage of the different time scales for

the trophic levels of the food chain to apply

aggregation methods (singular perturbation tech-

niques) to simplify the models for the dynamics of

the system.

In Rinaldi and Muratori (1992a,b), Muratori

and Rinaldi (1989, 1992) a singular perturbation

technique is applied to slow-fast systems. The
model is the Rosenzweig�/MacAthur model where

the lowest trophic level grows logistically when not

predated, that is nutrients are not modelled

explicitly; they determine implicitly the carrying

capacity. The trophic interactions are modelled

using the Holling type II functional response.

Different time-scales for the trophic levels is

obtained by assuming a low efficiency for the
trophic levels, that is, the maximum growth rate of

each population is a small fraction of its maximum

ingestion rate.

Since we study the effects of nutrient recycling

we use a mass-balance model where the nutrients

are modelled explicitly. We assume here complete

recycling of the nutrients in the food chain. This

facilitates the use of mass conservation laws with
the formulation of the model. In Kooi et al. (1998),

we applied aggregation methods to bi-trophic food

chains under two environmental conditions, batch

and chemostat, where the batch condition is a

special case of the chemostat condition with

dilution rate equal zero. The model was a mass-

balance model where nutrients are modelled ex-
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plicitly. We assumed different time scales for the
trophic levels, but we kept the efficiencies at their

normal magnitude. As a consequence, there is no

complete time scale separation. The model ana-

lysed in Kooi et al. (1998) is a special case of the

model analysed here with no maintenance and

zero recycle rates of the faeces and metabolic

products.

Community models (nutrient, prey, predator,
materials and so on) are complex models involving

many variables and parameters. The analytical

analysis of these models is in general impossible.

Usually, one has to perform bifurcation analysis

with respect to one or two parameters only chosen

among the great number of them. Aggregation

methods allow to get a reduced model (1 or 2

dimensional in this paper) that can be studied
analytically. In that case, we obtain general results

on the complete model.

This paper is organized as follows. After the

formulation of the model we describe different

related models described and analysed in the

literature. In the section on model analysis we first

motivate the choice of the parameter values we use

in our study. Thereafter we give short descriptions
of the two mathematical techniques we use in

analysing the model, namely bifurcation analysis

and singular perturbation theory. We continue

with the detailed analysis of the batch reactor and

chemostat reactor cases. In both cases the full

model as well as the aggregated model is analysed.

In the Section 8 we relate the obtained results with

those in the literature.

2. Model description

In this section, we give the model for a

predator�/prey�/nutrient system in a closed or

open environment with nutrient recycling. There-

after the relationship with models proposed and

analysed in the literature is described.
Food webs being a closed system are based on

producers that convert carbon dioxide CO2 to

organic compounds. This process is carried out

predominately by photosynthetic organisms that

convert light energy to chemical energy; the

chemical energy is stored within the organic

compounds that are formed. These autotrophic

organisms are plants in terrestrial systems and

photosynthetic organisms such as the algae in

marine systems. Most algae have also hetero-

throphic capabilities to supplement their energy

and nutrient requirement and are called mixo-

throphs (Kooijman et al., 2002). The produced

organic carbon becomes available to heterotrophic

consumers. Hence, in closed systems, with no

exchange of matter with the environment, energy

is supplied to the system as light energy (solar

radiation), otherwise the community will dissipate

the available energy since biological processes are

dissipative by the generation of waste heat, and

therefore the community disappears. The waste

heat leaves the system by convection or radiation.

In open systems consisting of heterotrophic

organisms there is an input of allochthonous

organic matter and chemical energy at the same

time. No inflow of light energy is needed. When an

autotroph or mixothroph is part of the food chain

in an open system, light energy is supplied besides

the chemical energy of the input matter, see also

Kooijman et al. (2002). There is loss of energy via

chemical energy in the matter that leaves the

system and via convection or radiation of waste

heat.

We assume that the reactor is spatially homo-

geneous and with a time-invariant input of the

nutrient while all community components are

washed-out at possibly different rates. In Fig. 1

the material fluxes through the food chain are

depicted. We denote the nutrient concentration by

x0, prey biomass by x1 and predator biomass by

Fig. 1. Material fluxes through the nutrient�/prey�/predator

food chain with recycling. Food is ingested and the unusable

part is transferred into faeces. These faeces and the mainte-

nance-associated metabolic products are recycled into nutrients.
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x2. The produced degradable materials excreted by
the prey population are denoted by p1 and z1 and

those produced by the predator population by p2

and z2. The model with nutrient recycling, reads:

dx0

dt
�(xr�x0)D0�I0;1f0;1(x0)x1�a1p1�b1z1

�a2p2�b2z2; (1a)

dx1

dt
�m0;1f0;1(x0)x1�m1x1�D1x1

�I1;2f1;2(x1)x2; (1b)

dx2

dt
�m1;2x2f1;2(x1)�m2x2�D2x2; (1c)

dp1

dt
� ((I0;1�m0;1)f0;1(x0)x1�a1p1)�D1p1; (1d)

dp2

dt
� ((I1;2�m1;2)f1;2(x1)x2�a2p2)�D2p2; (1e)

dz1

dt
�m1x1�b1z1�D1z1; (1f)

dz2

dt
�m2x2�b2z2�D2z2; (1g)

where fi�1,i(xi�1) are the scaled Holling type II

functional responses for i�/1, 2 defined by

fi�1;i(xi�1)�
xi�1

ki�1;i � xi�1

: (2)

The equations given above are derived by

applying mass conservation laws for each com-
partment indicated in Fig. 2. See Tables 1 and 2

for a definition of the parameters. We assume

yi�1,i �/mi�1,i /Ii�1,i to be constant, called the

efficiency (ecology) or yield (microbiology). For

biologically realistic situations some of the para-

meters are related as follows: Ii�1,i �/mi�1,i �/0,

that is the efficiency is less than one (yi�1,I B/1),

and 05/mi B/mi�1,i , that is the maintenance rate is
less than maximum growth rate, while generally

m1,2B/m0,1.

We described now the terms in system Eqs. (1a),

(1b), (1c), (1d), (1e), (1f) and (1g) one by one. The

first term on the right-hand side of Eq. (1a) is the

supply rate minus the removal rate of the nutrient

into and from the reactor. The second term is the

ingestion rate of the nutrient by the prey. The last

four terms stand for the recycling rates of the

faeces and metabolic products. The first terms on

the right-hand side of Eqs. (1b) and (1c) are the

growth rates, the second terms the production rate

of the maintenance-associated products and the

third terms the removal rate of the biomasses from

the reactor. The last term in Eq. (1b) is the

Fig. 2. Material fluxes through the food chain with recycling.

Food is ingested with rate Ii�1,i fi�1,i xi . Per unit of time, the

part (Ii�1,i�/mi�1,i ) fi�1,i xi is unusable and transferred into

faeces pi . The faeces are decomposed at an exponential decay

rate ai . Maintenance-associated products zi are formed at a rate

mi xi . These products are decomposed at an exponential decay

rate bi .

Table 1

Parameters and state variables for both full and reduced model:

t�/time, m�/biomass, v�/volume of the region of interest

Parameter Unit Interpretation

t t Time

/t/ t Fast time variable

x0 m v�1 Nutrient density

xi m v�1 Biomass density

pi m v�1 Faeces

1i m v�1 Metabolic product density

xr m v�1 Nutrient concentration in reservoir

D t�1 Dilution rate

mi t�1 Maintenance rate coefficient

ki�1,i m v�1 Saturation constant

Ii�1,i t�1 Food uptake rate coefficient

mi�1,i t�1 Population growth rate coefficient

yi�1,i �/ Yield or efficiency

ai t�1 Faeces recycle rate

bi t�1 Metabolic products recycle rate
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ingestion rate of the prey by the predator. Since

the predator is not consumed this term is missing

in Eq. (1c). The first terms of Eqs. (1d) and (1e) are

the formation rates of faeces which is proportional

to the difference between the maximum ingestion

rate and the maximum growth rate. The first terms

of Eqs. (1f) and (1g) are the formation rate of the

maintenance-associated products. We assume that

the decomposers are abundant. Therefore they are

not modelled explicitly and the materials released

by the species in the reactor are degraded expo-

nentially into nutrients. This gives the second

terms aipi in Eqs. (1d) and (1c), and bi zi in Eqs.

(1f) and (1g). Finally the removal rates of all

products are the last terms of Eqs. (1d), (1e), (1f)

and (1g).

Some terms in system Eqs. (1a), (1b), (1c), (1d),

(1e), (1f) and (1g) may have different biological

interpretations. For instance, mi , i�/1, 2 are often

called respiration rate constants and the Di ’s are

removal rates possibly due to natural death or

wash-out.

The two environmental conditions considered in

this paper are the batch reactor and the chemostat

reactor. When Di�/0, i�/0, 1, 2 there is no input

of nutrients at the basis of the food chain nor

output at all trophic levels. This describes the

batch reactor. For this closed system no mass is

exchanged with the environment. On the other
hand, when Di�/D , i�/0, 1, 2, the equations

describe the dynamics of a food chain in a

chemostat reactor where D �/0 is the dilution

rate and xr�/0 the concentration of the nutrient

in the reservoir.

In this model formulation instantaneous recy-

cling of the respiratory products and the faeces is

obtained by assuming a fast nutrient recycling
rate, that is ai �/mi�1,i and bi �/mi�1,I �/mi . Then,

the last four equations Eqs. (1d), (1e), (1f) and (1g)

give

a1p1� (I0;1�m0;1)f0;1(x0)x1; (3a)

a2p2� (I1;2�m1;2)f1;2(x1)x2; (3b)

b1z1�m1x1; (3c)

b2z2�m2x2; (3d)

where we used that Di are negligible small with
respect to ai and bi for i�/1, 2. These expressions

must be substituted in Eq. (1a). The resulting

equation together with Eqs. (1b) and (1c) form the

reduced model for the predator-prey system in the

chemostat. Here we will assume that bi �/�, i�/1,

2, that is instantaneous degradation of the labile

maintenance-associated products and we neglect

natural death. We take 0B/ai B/�, that is the
particulate nutrients are regenerated by decom-

posers which are assumed to be available ad

libitum, so that we do not model their dynamics

explicitly. Notice that when ai �/bi �/0, i�/1, 2 the

model boils down to the predator�/prey model

without recycling analysed in Kooi et al. (1998).

In the next section, we will use aggregation

techniques to derive reduced systems of the
following full system where o enforces time-

separation

dx0

dt
�(xr�x0)D0�I0;1f0;1(x0)x1�a1p1�m1x1

�a2p2�om2x2; (4a)

dx1

dt
�m0;1f0;1(x0)x1�m1x1�D1x1

�oI1;2f1;2(x1)x2; (4b)

dx2

dt
�o(m1;2x2f1;2(x1)�m2x2)�D2x2; (4c)

Table 2

Parameter set for the substrate-bacterium-ciliate model (o�/1)

after Nisbet et al. (1983a), and the substrate-bacterium-worm

model (o �/1) after Kooi et al. (1998)

Parameter Units i�/1 i�/2

o�/1 o �/1

yi�1,I �/ 0.4 0.6 0.6

/mi�1;i/ h�1 0.5 0.2 0.01

ki�1,I Mg dm�3 8 9 50

In both cases we have Ii�1,i �/mi�1,i /yi�1,i and mi �/0.05

mi�1,i . The values for the faeces recycle rates ai , i�/1, 2 are

taken equal to the maximum growth rate of the prey m0,1. The

nutrient density and the biomass density as well as the

saturation constants ki�1,i measured in gram can be converted

in C-mol for instance for glucose as the nutrient 30 g per C-mol

glucose CH2O, and 24.6 g dry weight per C-mol (Kooijman,

2000). Here we assume for simplicity that the chemical

composition of the nutrient, prey and predator are the same.
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dp1

dt
� (I0;1�m0;1)f0;1(x0)x1�a1p1�D1p1; (4d)

dp2

dt
�o(I1;2�m1;2)f1;2(x1)x2�a2p2�D2p2: (4e)

Notice that the incorporation of the time-scale

effects, modelled in the same way as in the

previous paper Kooi et al. (1998), differs from

that done in Rinaldi and Muratori (1992a,b),
Muratori and Rinaldi (1989, 1992). In those

papers the maximum ingestion rate of the pre-

dator, I1,2, is not multiplied with o , only the

maximum growth rate, m1,2, is. The implication is

that in their model the efficiency decreases down

to zero when o0/0. This is hard to understand

from a biochemical point of view; net conversion

efficiencies from one organism to another are
typically around 0.1, and from suitable organic

substrate such as glucose to organism about 0.5

(Kooijman, 2000). We keep the conversion effi-

ciency constant and multiply the maximum inges-

tion rate of the predator I1,2, the maximum growth

rate m1,2 and the specific maintenance rate m2 with

o . In this way the efficiency remains unchanged

when o is varied.

3. Model analysis

3.1. Parameter values

The full model Eqs. (4a), (4b), (4c), (4d) and (4e)

will be analysed using numerical bifurcation ana-
lysis. The parameter values are after Nisbet et al.,

1983a and given in Table 2. They are realistic for a

two-trophic microbial food chain consisting of

substrate, bacterium and ciliate. The values for the

new parameters, the faeces recycle rates ai are

assumed to be the same as the maximum growth

rate of the bacterium. The results are presented in

one-parameter and two-parameter bifurcation dia-
grams. In a one-parameter bifurcation diagram the

equilibrium biomass or extreme values during a

limit cycle, are plotted as function of one bifurca-

tion parameter for instance the nutrient input,

whereby all other parameters are held constant.

Parameter values at which the asymptotic dynamic

behaviour changes suddenly, fix bifurcation
points.

In some realistic cases, like a food chain of

sewage-bacterium-worm (for example the water

nymph Nais elinguis , a oligochaete species) often

found in waste-water treatment plants (Ratsak et

al., 1993), there are differences in the order of

magnitudes of the ingestion and growth rates.

Parameter values for this model are also given in
Table 2 and will be used when we do simulations

associated with the aggregation technique.

3.2. Bifurcation analysis

For an introduction to bifurcation analysis the

reader is referred to Guckenheimer and Holmes

(1985), Kuznetsov (1998) and to Bazykin (1998)
for the application to ecosystem models. Bifurca-

tion analysis gives information about the long-

term dynamic behaviour of nonlinear dynamic

systems. The structural stability is studied with

respect to so-called free or bifurcation parameters.

When such a parameter is varied, a value at which

the asymptotic dynamics changes abruptly (for

instance the solution becomes a stable limit cycle
instead of a stable equilibrium) is called a bifurca-

tion point. Numerical bifurcation packages, such

as auto: (Doedel et al., 1997) and locbif, content:

(Khibnik et al., 1993; Kuznetsov and Levitin,

1997; Kuznetsov, 1998) are available to calculate

bifurcation points.

Two bifurcations types appear to be important

with the study of our model: the transcritical
bifurcation which determines the boundary of

coexistence of species in the parameter space and

the Hopf bifurcation at which point the equili-

brium of the system becomes unstable and the

asymptotic dynamics becomes oscillatory. The

phenomenon that the system becomes unstable at

higher levels of nutrient supply was found by

Rosenzweig (1971) with the Rosenzweig�/Ma-
cArthur model for a predator�/prey system and is

known as the paradox of enrichment. Thereafter it

was found analysing many related predator�/prey

models under various environmental conditions.

Generally, the system not only starts to oscillate,

but these oscillations become also severe.
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A wide class of predator�/prey models possess
similar bifurcation diagrams, see for instance

Nisbet et al. (1983b), Gurney and Nisbet (1998).

In these bifurcation diagrams the long-term dy-

namics is studied depending on environmental

conditions. For the batch reactor the nutrient

availability at the start of the experiment and the

removal rate (due to harvesting or mortality) of

the predator are often used as bifurcation para-
meters. In the chemostat case the natural bifurca-

tion parameters are the concentration of the

nutrients in the inflow and the dilution rate.

3.3. Singular perturbation theory

In this section we give a short overview of

singular perturbation techniques. The reader is

referred to Hoppensteadt (1993), Jones (1995),

Kevorkian and Cole (1995) for introductions into

perturbation theory. Singular perturbation theory

deals with systems of the following form:

dx

dt
�f (x; y; o); (5a)

dy

dt
�og(x; y); (5b)

where x(0)�/x0 and y (0)�/y0. This system Eqs.

(5a) and (5b) can be reformulated with a change of

time-scale as

o
dx

dt
� f (x; y; o); (6a)

o
dy

dt
�og(x; y); (6b)

where t�/ot . Notice that in the singular perturba-

tion problem when o is put equal to zero in Eqs.

(6a) and (6b), these equations have a structural

different form than the unperturbed original

system.

The first step consists in setting o�/0 which gives
the set of fast equilibria. In the first case, the fast

system Eqs. (5a) and (5b), we get the fast system

dx̄=dt�f (x̄; ȳ; 0) and dȳ=dt�0: The equilibria

of this fast system are given by: f (x̄; ȳ; 0)�0:/
In the second case, the slow system Eqs. (6a) and

(6b), we get the algebraic equation of the so called

‘slow manifold’: f (x̄; ȳ; 0)�0: With good hy-
pothesis, this is equivalent to x̄�h(ȳ) and we can

then substitute x̄ by h(ȳ) in the second equation,

then: dȳ=dt�g(h(ȳ); ȳ) where generally x̄(0)"

h(ȳ(0)): Observe that we divided by o by derivating

with respect to t instead of t . The procedure is

generally mathematically justified by the Tikhonov

theorem (Tikhonov et al., 1985), which guarantees

that the solution x̄(t); ȳ(t) is a good approximation
for x (t ), y(t) in some finite time interval when o is

sufficiently small.

In this paper, we use a geometrical approach.

The set of equilibria M0�/{(x , y ); f (x , y , 0)�/0}

defined for o�/0 is an attracting invariant set in

the phase space, and is assumed to be a manifold.

When o is positive, but small, we want to know if

the previous attracting invariant manifold persists
and how to calculate the dynamics on the pertur-

bated attracting invariant manifold Mo . The

theory of normally hyperbolic invariant manifolds

(Fenichel, 1971; Hirch et al., 1977; Wiggins, 1994)

aims to answer this kind of questions, by the way

of a geometrical approach. The condition of

persistence is given by the normal hyperbolicity.

It means that under the dynamics linearized about
the invariant manifold, the growth rate of vectors

transverse to the invariant manifold dominates the

growth rate of vectors tangent to the invariant

manifold.

In some cases, there are multiple equilibria for

the fast system, some are stable, the other are

unstable. Here, we will deal with the case where

there are two equilibria for which the stability
condition depends on the value of the slow

variables. After the fast transient, because of the

dynamics of the slow variables, the stability of the

two fast equilibria switches. At the bifurcation

point, the invariant manifold is not normally

hyperbolic. In (Dumortier and Roussarie, 1996,

2000), the authors propose a geometrical approach

to deal with such non-hyperbolic singularities.
Their idea consists in successive blows-up until

the singularity becomes hyperbolic. Roughly

speaking, there are two invariant manifolds for

o�/0, one for each stable set of equilibria. For

small positive o , the dynamics starts at one and

suddenly it moves fast to the other one and

continues there, leading to an attractor (Auger et
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al., 2000b) or following the manifold until it
becomes unstable. In the latter case it jumps

suddenly to the first slow manifold again, and so

on leading to a quasi-limit cycle. An example is

dealt with in Kooi et al. (1998).

The main steps of the aggregation method based

on the Fenichel theorem are:

1) Find the equilibria of the fast system (o�/0)

defined by f(x , y , 0)�/0.

2) Analyse the linear stability of the equilibria.

For each y , the stability depends on y .
3) If for a given y , the equilibrium is hyperboli-

cally stable, then substitute this equilibrium

value in the equation of the derivative of y ,

dy /dt . If for a given y , the equilibrium is

non-hyperbolically stable, then one should use

the method developed in Dumortier and

Roussarie (1996). In this paper, we only

deal with the hyperbolic case. A forthcoming
paper will be devoted to the non-hyperbolic

case.

4. Batch reactor conditions

The model under batch conditions, that is a

closed system with no material exchange with the

environment, is obtained from model Eqs. (4a),

(4b), (4c), (4d) and (4e) with Di �/0, i�/0, 1, 2. The

total biomass, for instance measured in C-mol,
denoted by C and defined by

C(t)�x0(t)�x1(t)�p1(t)�x2(t)�p2(t); (7)

is time-invariant, C (t)�/C (0), due to mass con-

servation. This equality will be used to eliminate

the variable x0. By replacing x0 by C�/x1�/p1�/

x2�/p2, system Eqs. (4a), (4b), (4c), (4d) and (4e)

with Di �/0, i�/0, 1, 2, reads:

dx1

dt
�x1

�
m0;1

C � x1 � p1 � x2 � p2

k0;1 � C � x1 � p1 � x2 � p2

�m1

�
�oI1;2

x1x2

k1;2 � x1

; (8a)

dx2

dt
�ox2

�
m1;2

x1

k1;2 � x1

�m2

�
; (8b)

dp1

dt
�(I0;1�m0;1)

� C � x1 � p1 � x2 � p2

k0;1 � C � x1 � p1 � x2 � p2

x1

�a1p1; (8c)

dp2

dt
�o(I1;2�m1;2)

x1

k1;2 � x1

x2�a2p2: (8d)

This makes it possible to deal with the four

dimensional full system for the state variables x1,
x2, p1, p2, where C is used as a bifurcation

parameter. Notice that we assumed recycling,

that is ai �/0, i�/1, 2. When ai �/0, the variables

p1, p2 do not appear in any of the two Eqs. (8a) and

(8b) when C is defined as in Kooi et al. (1998) by

C(t)�x0(t)�
x1(t)

y0;1

�
x2(t)

y0;2

; (9)

where yi�1,i �/mi�1,i /Ii�1,i is the efficiency again.

We introduced y0,2�/y0,1y1,2. We remark that the

total biomass is here measured in gram instead of

C-mol in Eq. (7). The converted factor is for

instance for glucose as the nutrient 30 g per C-mol

glucose CH2O, and 24.6 g dry weight per C-mol
biomass CH1.8N0.2O0.5 (Kooijman, 2000).

Thus, without recycling the first two equations

dx1

dt
�x1

�
m0;1

C � x1=y0;1 � x2=y0;2

k0;1 � C � x1=y0;1 � =y0;2

�m1

�

�oI1;2

x1x2

k1;2 � x1

; (10a)

dx2

dt
�ox2

�
m1;2

x1

k1;2 � x1

�m2

�
; (10b)

can be solved separately and then

dp1

dt
�(I0;1�m0;1)

� C � x1=y0;1 � x2=y0;2

k0;1 � C � x1=y0;1 � x2=y0;2

x1; (11a)

dp2

dt
�o(I1;2�m1;2)

x1

k1;2 � x1

x2: (11b)

are used to obtain p1(t), p2(t ). Hence, although

products are also formed when no recycling is
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involved, we nevertheless can apply a mass-con-
servation argument, see Smith and Waltman

(1994), to reduced the dimension of the system

with the biomasses a state variables, by one.

The equilibria of the full system Eqs. (8a), (8b),

(8c) and (8d) with o�/1 are

x1��
k1;2m2

m1;2 � m2

; (12a)

x2��
k1;2 � x1�

I1;2

�
�
m0;1

C � x1�� p1�� x2�� p2�

k0;1 � C � x1�� p1�� x2�� p2�

�m1

�
; (12b)

p1��
(I0;1 � m0;1)m1

m0;1a1

x1�; (12c)

p2��
(I1;2 � m1;2)m2

m1;2a2

x2�; (12d)

where x2� is still given implicitly where the positive

root of the resulting quadratic equation is taken.

The total biomass C defined in Eq. (7) has to be

sufficient high to get coexistence of prey or even
both prey and predator in the reactor. The value of

C at the boundary of the region with coexistence,

is called a transcritical bifurcation TC, one where

only the prey can persist and one where the

predator can persist too.

Mathematically the first point is found when the

following conditions are satisfied. The equilibrium

with biomass of the prey is zero, x̂1� x̂2�0; is
such that the growth rate of the prey is zero too,

dx1/dt�/0. That is, we are at the boundary of the

region where the prey can invade the nutrient

system. Eqs. (8c) and (8d) give p̂1� p̂2�0: The

resulting equations are

Ĉ� x̂0; (13a)

0�m0;1f0;1(x̂0)�m1: (13b)

These two equations for the positive equilibrium

values x̂0 fix the value Ĉ: We obtain

Ĉ� x̂0�
k0;1m1

m0;1 � m1

: (14)

At the second transcritical bifurcation that
marks the point where the predator can invade

the nutrient�/prey system, the equilibrium with

biomass of the predator is zero, x̃2�0 and

furthermore the growth rate of the predator is

zero too, dx2/dt�/0. Eq. (8d) gives directly p̃2�0:
The resulting equations are

C̃� x̃0� x̃1� p̃1; (15a)

0�m0;1f0;1(x̃0)�m1; (15b)

0�m1;2f1;2(x̃1)�m2; (15c)

0�(I0;1�m0;1)f0;1(x̃0)x̃1�a1p̃1: (15d)

Eqs. (15a), (15b), (15c) and (15d) give

x̃0�
k0;1m1

m0;1 � m1

; (16a)

x̃1�
k1;2m2

m1;2 � m2

; (16b)

p̃1�
(I0;1 � m0;1)m1x̃1

m0;1a1

: (16c)

Eq. (15a) is a consequence of complete recycling of

the nutrients which gives conservation, in this case

in absence of the predator. Substitution of Eqs.

(16a), (16b) and (16c) in Eq. (15a) gives the

transcritical bifurcation value C̃:/
When increasing C , system Eqs. (8a), (8b), (8c)

and (8d) shows a Hopf bifurcation which marks
the origin of oscillatory behaviour. No closed form

expressions are available and we have to calculate

this point numerically.

5. Two time scales batch reactor case

In this section, we study the case with two

different time scales, that is small o . The fast

system is obtained by putting o�/0 in system

Eqs. (8a), (8b), (8c) and (8d). It is formed by

Eqs. (8a), (8c) and (8d) where x̄2 is treated as a

parameter.

dx̄1

dt
� x̄1

�
m0;1

C � x̄1 � p̄1 � x̄2 � p̄2

k0;1 � C � x̄1 � p̄1 � x̄2 � p̄2

�m1

�
; (17a)
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dp̄1

dt
� (I0;1�m0;1)

� C � x̄2 � p̄2 � x̄1 � p̄1

k0;1 � C � x̄2 � p̄2 � x̄1 � p̄1

x̄1

�a1p̄1; (17b)

dp̄2

dt
��a2p̄2: (17c)

The equilibria of this three-dimensional system
for the three fast variables x̄1; p̄1 and p̄2 read

x̄1��
m0;1a1(C � x̄2 � Ĉ)

m1(I0;1 � m0;1) � m0;1a1

; (18a)

p̄1��
(I0;1 � m0;1)m1

m0;1a1

x̄1�; (18b)

p̄2��0; (18c)

where x̄2 is the slow variable of which the

dynamics is described by an ordinary differential

equation (ode) derived below.

Because the ode Eq. (17c) for p̄2 is decoupled
from the two odes Eqs. (17a) and (17b), it is

sufficient to study their 2�/2 Jacobian matrix

evaluated at the equilibrium x̄1 and p̄1 given in

Eqs. (18a) and (18b). It can be shown that

i) If CBĈ�x̄2 the equilibrium (x̄1; p̄1; p̄2)�
(0; 0; 0) is stable and is the unique non-

negative equilibrium.

ii) If Ĉ�x̄2BC the trivial equilibrium

(x̄1; p̄1; p̄2)�(0; 0; 0) is unstable and the
non-trivial (x̄1; p̄1; p̄2)�(x̄1�; p̄1�; 0) is stable

and is the unique positive equilibrium.

These equilibria Eq. (18a) for x1, Eq. (18b) for

p1 and Eq. (18c) for p2, where x̄2 is a parameter, is

substituted in Eq. (8b) with o�/0. This yields the

slow system for the slow variable x̄2 when x̄1�0:

dx̄2

dt
� x̄2

�
m1;2

x̄1

k1;2 � x̄1

�m2

�
; (19)

Or when x̄150

dx̄2

dt
��m2x̄2: (20)

where t�/ot again. The equilibrium is

x̄2��C�
m1k0;1

m0;1 � m1

�
m1(I0;1 � m0;1) � m0;1a1

m0;1a1

� m2k1;2

m1;2 � m2

�C�C̃; (21)

where we used Eqs. (16a), (16b) and (16c). We

conclude that

i) If CBĈ then (x̄1; x̄2; p̄1; p̄2) approaches (0;

0; 0; 0).

ii) If ĈBCBC̃ then (x̄1; x̄2; p̄1; p̄2) approaches

(x̄1�; 0; p̄1�; 0):/
iii) If ĈBC then (x̄1; x̄2; p̄1; p̄2) approaches

(x̄1�; x̄2�; p̄1�; 0):/

The points at which the reduced model changes,

fixed by C�Ĉ and C�C̃ are transcritical bifur-

cation points for both the reduced model and the

full model given in Eqs. (15a), (15b), (15c), (15d),

(16a), (16b) and (16c). With respect to this, the

reduced model reflects the asymptotic dynamics of

the full model well.

In Figs. 3 and 4 simulation results for the prey

and predator biomass densities, x1(t), x2(t), and

for the nutrient density, x0(t ), are depicted for the

reduced and full model where C�300�C̃: After

the transient, the solution of the reduced model is

close to that of the full model. The differences for

the equilibria of both models is explained as

follows. Comparing Eqs. (8b) and (19) gives that

in equilibrium we have x̄1��x1� and subsequently

p̄1��p1�; see Eqs. (8c) and (18b). The difference

between x̄2� and x2� is due to the fact that the

consumption term of the predator feeding on the

prey, (oI1,2x1/(k1,2�/x1))x2 is neglected in Eq. (17a)

and not in Eq. (8a). After t:/600, the biomass

density of the predator x2(t) is large and this

explains the difference between x̄2� and x2�, and

partly the difference between p̄2� Eq. (18c) and p2�

Eq. (12d). Furthermore we have x̄0��Ĉ and

therefore x̄0� is time-invariant. This follows directly

from substitution of the expressions Eqs. (18a),

(18b) and (18c) in the expression for C in Eq. (7).

This explains the difference between x̄0� and x0� in

Fig. 4.
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When o�/0 there is a C so that the full system

has a Hopf bifurcation. In Fig. 5 we depict the

two-parameter bifurcation diagram where C and o

are the bifurcation parameters. The curve denoted

by H is the Hopf bifurcation curve that ap-

proaches the o�/0 axis when C 0/�. Hence, for

a fixed strictly positive value of o and when C is

greater than its value on the H-curve (1200 in Fig.
5), the reduced system has a stable equilibrium, as

is shown in this section, while the full system

converges to a stable limit cycle when time goes to

infinity. In other words, the approximation is valid

for a very small o when C is large.

This illustrates that for practical cases when o�/

0, the reduced system gives not always good

approximations for the long-term dynamics. In
the next section, we deal with the chemostat case

where we retain first-order terms with the con-

struction of an reduced model. This gives a better

long-term approximation. Such an approach can

be applied with batch conditions discussed here in

the same manner.

6. Chemostat conditions

The model under chemostat conditions, is

obtained from model Eqs. (4a), (4b), (4c), (4d)

and (4e) with Di �/D , i�/0, 1, 2. We define now

the total biomass measured in C-mol H(t) by

H(t)�x0(t)�x1(t)�x2(t)�p1(t)�p2(t): (22)

By replacing x0 by H�/x1�/p1�/x2�/p2, system

Fig. 3. The biomasses of the predator and prey for the full

system x2, x1 and the reduced system x̄2; x̄1 as a function of time

t , with C�/300 and initial conditions: x0(0)�/145, x1(0)�/150,

p1(0)�/0, x2(0)�x̄2(0)�5 and p2(0)�/0. Solid lines are for the

full system xi (t ), and dashed lines are for the reduced system

x̄i(t); i�/1, 2.

Fig. 4. The nutrient density for the full system x0 and the

reduced system x̄0 as a function of time t , with C�/300. Initial

conditions as in Fig. 3 thus x0(0)�/145. Solid lines are for the

full system x0(t ) and dashed lines are for the reduced system

x̄0(t):/

Fig. 5. Two-parameter bifurcation diagram for the model

under the batch conditions Eqs. (8a), (8b), (8c) and (8d). The

bifurcation parameters are o and the initial biomass in the

reactor C . Values assigned to physiological parameters and

reference values for the perturbation parameters are listed in

Table 2. The curve H marks a supercritical Hopf bifurcation

curves.
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Eqs. (4a), (4b), (4c), (4d) and (4e) with Di �/D , i�/

0, 1, 2, reads:

dH

dt
��oD(H�xr); (23a)

dx1

dt
�x1

�
m0;1

H � x1 � p1 � x2 � p2

k0;1 � H � x1 � p1 � x2 � p2

�m1

�oD�oI1;2

x2

k1;2 � x1

�
; (23b)

dx2

dt
�ox2

�
m1;2

x1

k1;2 � x1

�m2�D

�
; (23c)

dp1

dt
� (I0;1�m0;1)

� H � x2 � p2 � x1 � p1

k0;1 � H � x2 � p2 � x1 � p1

x1�a1p1

�oDp1; (23d)

dp2

dt
�o(I1;2�m1;2)

x1

k1;2 � x1

x2�a2p2

�oDp2: (23e)

First we analyse this model where o�/1 with
numerical bifurcation techniques. The two-para-

meter bifurcation diagram for the model with and

without nutrient recycling is given in Fig. 6. The

transcritical bifurcation curve which determines

the boundary of coexistence of species in the

parameter space is denoted by TCr and the Hopf

bifurcation curve, that bounds the region where

the system oscillates, is denoted by Hr . We recall
that the parameter values given in Table 2 are

from Nisbet et al., 1983a. The transcritical bifur-

cation curve TC and Hopf bifurcation curve H are

the two bifurcation curves for that model without

nutrient recycling, thus a1�/a2�/0.

For a fixed dilution rate the density of the

nutrient in the inflow has to be sufficiently high to

get coexistence of both prey and predator in the
reactor. Equations similar to those for the batch

reactor Eqs. (15a), (15b), (15c) and (15d), describe

this transcritical bifurcation. The following sub-

stitutions have to be made: C 0/H and mi 0/mi�/

D and a10/a1�/D . In this way we obtain now a

relationship between the two parameters D and xr ,

that is, the function x̃r(D) of which the graph is the

bifurcation curve TCr in Fig. 6.

When the nutrient supply is increased further,

the positive equilibrium becomes unstable at a

Hopf bifurcation H and a stable limit cycle

originates. At that point the real part of two

complex conjugate eigenvalues equals zero. Ex-

plicit expressions for the relationship between the

two parameters D and xr do not exist. Therefore,

the Hopf bifurcation curve has to be approximated

numerically.

In Fig. 7 the long-term biomass values for the

predator x2 are depicted as a function of xr for a

fixed D�/0.08. If xr is lower that its transcritical

bifurcation TCr value the prey is the only organ-

ism in the reactor. If the xr -values is higher than its

TCr-value the predator can invade the system

when it is introduced in small amounts and there

is a stable coexistence. When xr is increased and

the Hr-value is reached, this equilibrium becomes

unstable. For higher xr values the system oscillates

and the maximum and minimum values of the

stable limit cycles are plotted in Fig. 7. With rather

high xr values the minimum values become very

low. For comparison in Fig. 7 results are also

Fig. 6. Two-parameter bifurcation diagram for the predator�/

prey model in the chemostat with (a1�/a2�/0.5) and without

(a1�/a2�/0) recycling Eqs. (23a), (23b), (23c), (23d) and (23e).

The bifurcation parameters are the dilution rate D and the

nutrient concentration in reservoir xr. Values assigned to

physiological parameters and reference values for the perturba-

tion parameters are listed in Table 2. The curves TC, TCr mark

transcritical bifurcation curves, H and Hr mark supercritical

Hopf bifurcation curves.
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given for the nutrient-prey-predator model with-

out recycling, a1�/a2�/0, also for D�/0.08.

7. Two time scales chemostat reactor case

We will now apply the singular perturbation

theory in the case that the prey dynamics feeding

on nutrient is fast and that the predator dynamics

feeding on the prey is slow (o�/1) is formed by the

two odes Eqs. (23b) and (23d). We will consider a

zero-order approximation and a first-order ap-

proximation where all o terms are retained. The
bifurcation analysis of the resulting fast system can

be done analytically for the zero-order approxima-

tion. For the first-order approximation we have to

resort to calculated bifurcation diagrams.

7.1. Zero-order approximations

The fast system is exactly the same as in the

batch reactor case Eqs. (17a), (17b) and (17c)

where constant C has to be replaced by H̄ which is

now an extra parameter, and we introduce
Ĥ�Ĉ�m1k0;1=(m0;1�m1):/

The two dimensional slow system for the vari-

ables H̄ and x̄2 reads

dH̄

dt
��D(H̄�xr); (24a)

dx̄2

dt
� x̄2

�
m1;2

x̄1

k1;2 � x̄1

�m2�D

�
; (24b)

where for x̄1 the expression Eq. (18a) is substi-

tuted. Similar to the batch case we introduce

H̃�
m1k0;1

m0;1 � m1

�
m1(I0;1 � m0;1) � m0;1a1

m0;1a1

� (m2 � D)k1;2

m1;2 � m2 � D
: (25)

Then, the equilibria are

H̄��xr; (26)

x̄2��xr�H̃: (27)

We conclude that

i) If xrBĤ then (x1; x2; p1; p2) approaches (0; 0;

0; 0),

ii) If ĤBxrBĤ then (x1; x2; p1; p2) approaches

(x1�; 0; p1�; 0),

iii) If H̃Bxr then (x1; x2; p1; p2) approaches (x1�;
x2�; p1�; 0).

Notice that contrary to the batch reactor case,

the slow system is now two-dimensional instead of

one. In the batch reactor case C serves as a

constant while here H is a variable which con-

verges to a constant xr for time goes to infinity.

This mathematical detail has large consequences.

The bifurcation diagram Fig. 6 shows that for

D �/0 the full system becomes unstable when xr is
increased and the Hopf bifurcation curve Hr is

passed, while the reduced system where D�/0 is

assumed in deriving the fast system, has still a

stable equilibrium in those situations. Hence the

zero-order approximation approach fails when

this occurs. Therefore we propose a first-order

approximation in the next subsection.

Fig. 7. One-parameter bifurcation diagram for the predator�/

prey model in the chemostat with (a1�/a2�/0.5) and without

(a1�/a2�/0) recycling Eqs. (23a), (23b), (23c), (23d) and (23e).

The bifurcation parameter is the nutrient concentration in

reservoir xr where D�/0.08. Values assigned to physiological

parameters and reference values for the perturbation para-

meters are listed in Table 2. Solid curves are the stable equilibria

and the extreme values of the stable limit cycles. Dashed curves

indicate the unstable equilibria.
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7.2. First-order approximation

The terms proportional to oI1,2 as well as oD are

retained and this yields the first-order approxima-

tion. The fast system reduces to the three odes,

Eqs. (23b), (23d) and (23e).

The two slow variables H̄ and x̄2 are now

parameters of the fast system. For small values

of xr there is a stable interior equilibrium. How-

ever, when xr is large the full system has multiple

equilibria as a consequence of the predator con-

sumption term proportional to oI1,2, and this

complicates the analysis and therefore we perform

a numerical bifurcation analysis where we used

locbif. In Kooi et al. (1998) we derived analytic

expressions for the chemostat case without recy-

cling and maintenance: ai �/mi �/0, i�/1, 2.

The calculated bifurcation one-parameter dia-

gram is shown in Fig. 8 where xr �/1600 and D�/

0.001. The single bifurcation parameter is the slow
variable x̄2: When asymptotic dynamics is con-

cerned, it is sufficient to consider H(t)�/xr ,

(Thieme, 1992; Smith and Waltman, 1994) and

since we are mainly interested the long-term

dynamics, we took H̄(t)�xr: There are two stable

slow manifolds, AD and BC, and one unstable

slow manifold, AC. The multiple solutions are the

trivial solution x̄2�0 and two roots of a quadratic
equation obtained by taking the right-hand side of

Eq. (23b) equal zero. Observe that the fact that the

resulting equation is quadratic in x̄1 results from

the predator consumption term proportional to

oI1,2 which was neglected in the zero-order approx-

imation. A transcritical bifurcation, where the

graph of the quadratic function crosses the x̄1

axis, is denoted by x̄2TC
and a tangent bifurcation,

where the discriminant of this quadratic function

is zero, is denoted by x̄2T
:/

Depending on the initial conditions x̄1(0); p̄1(0)

and p̄2(0); as well as x̄2(0); the system converges

quickly towards a stable equilibrium of the fast

system. When x̄2(0)B x̄2TC
it goes to the positive

stable part of the non-trivial branch (left side of D )

and when x̄2(0)� x̄2T
to the stable part of the

trivial branch (right side of B ).

When x̄2TC
B x̄2(0)B x̄2T

there are two stable

equilibria of the fast system. If x̄1(0) lies below

the curve AC in Fig. 8, the system converges

quickly to the trivial branch (between B and C). If

on the other hand x̄1(0) lies above the curve AC,

the system goes to the non-trivial branch (between

A and D). In other words, the unstable fast
manifold, curve AC is a separatrix.

When the two parameters xr and D are so that

x̄1T
Bx1��(m2�D)k1;2=(m1;2�m2�D) there is a

stable equilibrium and both reduced and full

system converge when time goes to infinity to

this positive equilibrium. If, on the other hand,

x̄1T
�x1� then the reduced system possesses a quasi-

limit cycle, such as the trajectory ABCD in Fig. 8,
while the full system shows a limit cycle also

shown in Fig. 8. Hence, this figure is also the

phase-plane plot for the full system where xr �/

1600 and D�/0.001.

Observe that generally when H "/xr these

manifolds move slowly. On the stable trivial fast

equilibrium manifold BC the asymptotic dynamics

Fig. 8. Phase-plane plot for the full system as well as the one-

parameter bifurcation diagram of fast system of the model with

recycling Eqs. (23a), (23b), (23c), (23d) and (23e) where xr �/

1600 mg dm�3 and D�/0.001 h�1. Values assigned to

physiological parameters and reference values for the perturba-

tion parameters are listed in Table 2 for o �/1. The closed solid

curve is the limit cycle (x1(t ), x2(t )) for full system. The

trajectory ABCD is the quasi-limit cycle for reduced system.

Point A indicates a tangent bifurcation point and point C a

transcritical bifurcation point, both for the reduced system.

Two stable branches of the fast equilibrium manifolds are B0/

C and D0/A. The fast unstable equilibrium manifold curve AC

is the separatrix.
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is described by

dH̄

dt
��D(H̄�xr) (28a)

dx̄2

dt
��Dx̄2; (28b)

where x̄1�0 and p̄1�0 are substituted in Eqs.

(23a) and (23c). On the stable non-trivial fast

equilibrium manifold DA the dynamics is de-

scribed by Eqs. (23a) and (23c)

dH̄

dt
��D(H̄�xr) (29a)

dx̄2

dt
� x̄2

�
m1;2

x̄1

k1;2 � x̄1

�m2�D

�
; (29b)

where x̄1 and p̄1 are the solutions of the equili-

brium Eqs. (23b) and (23d).

Subsequently for both the trivial and non-trivial

equilibrium manifolds the density of the nutrient,
x̄0(t); may be calculated by the conservation

relationship: x̄0(t)�xr� x̄1(t)� p̄1(t)� x̄2(t)�
p̄2(t): In Fig. 8 we show these solutions for the

reduced system x̄1(t) and x̄2(t) as well as the stable

limit cycle of the full system x1(t ) and x2(t).

8. Discussion and conclusions

In this paper we studied the dynamics of a

simple food chain where nutrient recycling is taken

into account and decomposition is simply mod-

elled as a degradation process. In the literature
more realistic models are described and analysed

where among others the decomposers are modelled

explicitly. We mention two papers where the

reader can find these models.

Two types (dissolved and particulate) of nutri-

ents are distinguished in Aota and Nakajima

(2000) where they study coexistence of phyto-

plankton and bacteria with nutrient recycling in
a close ecosystem. Phytoplankton can use only

dissolved (inorganic) nutrients while the bacteria

degrade particulate nutrient (dead bodies of phy-

toplankton and bacteria) as well. In Kooijman and

Nisbet (2000) the complete mass and energy turn-

over in a daphnids�/algae�/bacteria (consumers�/

producers�/decomposers) community in a closed

bottle is evaluated. The daphnids consume both

algae and bacteria. The algae use solar energy to

convert carbon dioxide CO2 to organic com-

pounds. Different model formulations for the

consumers were considered. Bacteria, the decom-

posers, digest their faeces and those of the algae,

and dead Daphnia , both instantaneously and

completely.

It is expected that the mathematical difficulty in

applying aggregation methods for more complex

models were decomposers are modelled explicity,

are similar to that analysed here. In this paper we

refrained from modelling the decomposers since

the mathematical difficulty is more transparent,

more tractable and similar remedies can be used

for the more complex models.

Without maintenance (mi �/0, i�/1, 2) and

recycling (ai �/0, i�/1, 2) Eqs. (10a), (10b), (11a)

and (11b) hold and it is easy to derive that all

biomass ends finally at the predator level and the

other levels are exhausted, see also Kooi et al.

(1998). However, in the batch system where

maintenance (mi �/0, i�/1, 2) and recycling of

the nutrient takes place (ai �/0, i�/1, 2), evolves to

a state where the biomass is distributed over the

different trophic levels, see Eqs. (12a), (12b), (12c)

and (12d).

In Nisbet et al. (1983b) it is shown that with the

Monod model being a special case of the Monod�/

Herbert model where mi �/0, i�/1, 2, the transcri-

tical bifurcation curve TC and the Hopf bifurca-

tion curve H intersect the horizontal axis where

D�/0. The results for the Monod�/Herbert model

depicted in Fig. 6, and already given in Nisbet et

al. (1983a), show that these bifurcation curves TC

and H do not intersect the D�/0 axis but

approach this axis when xr goes to infinity. That

is a stable equilibrium exists for non-zero, but

possibly small, dilution rates. From these results it

was concluded in Nisbet et al. (1983a) that

maintenance has a stabilising effect. In Fig. 6 the

curves TCr and Hr where maintenance is modelled

and also nutrient recycling is taken into account

the bifurcation curves intersect the D�/0 axis as

with the Monod model. Thus, nutrient recycling

counteracts the stabilising effect of maintenance.
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In Fig. 7 the biomasses are given for the model
with and without recycling, that is the Monod�/

Herbert model. Comparing the results for both

models shows that for model Eqs. (23a), (23b),

(23c), (23d) and (23e) the oscillations are more

severe and at troughs in the cycle the biomasses

can become very small. However, when this

occurs, the deterministic model formulation fails

to hold true and extinction due to demographic
stochasticity is likely (Rosenzweig, 1971).

Figs. 3 and 4 illustrate the power of the

aggregation technique. After the short transient,

the solution of the reduced model is close to that of

the full model. The transcritical bifurcations of the

reduced model and full model, which terminates

invasion of the prey trophic level, occur at exactly

the same bifurcation parameter values, Ĉ and C̃:/
For large C -values, however, the time scales

have to differ a lot (om1,2/m0,1�/1) in order to

obtain reasonable approximations. When o is not

small enough, the solution of the full model

converges to a stable limit cycle while the solution

of the reduced model converges to a stable

equilibrium. A first-order approximation ap-

proach would give the same qualitative long-term
dynamics for both the full and the reduced model.

The zero-order approximation in the chemostat

case, indicates a stable equilibrium for the reduced

model (where D�/0) and a limit cycle for the full

model (when D �/0 but small). Obviously a

hypothesis for applicability of the Fenichel Theo-

rem is not satisfied. This can be explained in

biological terms as follows. With D�/0 the reser-
voir, from which the nutrient is supplied into the

reactor, is decoupled from the chemostat reactor

and the situation resembles the batch reactor case.

Hence, the parameter xr is meaningless when D�/

0. As a result, as time goes to infinity the total

biomass H converges to xr if D �/0, but is time-

invariant when D�/0. Since in the aggregation

approach the dilution rate D is multiplied by the
perturbation parameter o , there is a discontinuity

for o�/0.

The first-order approximation approach gives a

better long-term approximation without extra

computational efforts for the model studied here.

With the first-order approximation reduced model

for the chemostat case, the transcritical bifurca-

tions of the reduced model and full model occur at
exactly the same bifurcation parameter values.

Furthermore, the tangent bifurcation parameter

values of the reduced model coincide with those at

the Hopf bifurcation of the full system. This

implies that the reduced and full model start to

oscillate when xr is increased leaving D un-

changed, at exactly the same parameter value.

The differences between the quasi-limit cycle of
the reduced system and the limit cycle of the full

system shown in Fig. 8 are related to the ‘delayed

bifurcations’ associated with the tangent and

transcritical bifurcations of the reduced system,

see Diener and Diener (1983), Eckhaus (1983),

Schecter (1985), Rinaldi and Muratori (1992b), De

Feo and Rinaldi (1998). This phenomenon will be

studied in a forthcoming paper.
Observe that we multiplied I1,2 with o in order to

get a more biologically realistic model. Hence,

there is no complete time-scale separation for the

different trophic levels, for the small growth rate

of the predator implies a small ingestion rate of the

prey. When I1,2 is multiplied with o the dynamics

of the fast system is much simpler than without

this factor as is assumed in Rinaldi and Muratori
(1992a). Unfortunately, the obtained dynamics of

the reduced system appears to be too simple under

certain circumstances. That is, the reduced system

gives not always good approximations for the

long-term dynamics, for instance when the initial

biomass C is large in the batch reactor case, the

reduced system has a stable equilibrium while the

full system a stable limit cycle. We showed that
also for the chemostat case the asymptotic beha-

viour of the reduced and full system can differ

qualitatively. Hence, as was done by Rinaldi and

co-workers, we have take the oI1,2 term into

account with the application of the aggregation

technique in order to get good mathematical

approximations.

Application of the zero-order approximation
perturbation technique does not always yield

useful results. We showed that this occurs when

the reduced system has a stable equilibrium while

the full model possesses a stable limit cycle. In

those cases a first-order approximation is needed

to get the same qualitative long-term dynamics for

both the full and the reduced model. Then, the
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reduced system has two slow manifolds and the
trajectory follows one slow manifold. When this

manifold becomes unstable, the trajectory jumps

to the other manifold. The trajectory continues to

move along this manifold until it becomes unstable

and the trajectory jumps back to the first mani-

fold, and so on and this forms a quasi-limit cycle.

In this article we show how the modelling of

food chains and the analysis of the resulting model
can be closely related. Bifurcation theory and

singular perturbation theory provide tools for the

analyse of mathematical models of small-scale

ecosystems when different time scales for the

trophic levels exist. The reduced model is lower

dimensional and is therefore easier to handle

analytically and numerically. Numerical simula-

tion of the reduced model requires less computing
time important with sensitivity studies and para-

meter estimation.
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