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The aim of this work is to provide a unified approach to the treatment of a class of
spatially structured population dynamics models whose evolution processes occur at two
different time scales. In the setting of the C0-semigroup theory, we will consider a general
formulation of some semilinear evolution problems defined on a Banach space in which the
two-time scales are represented by a parameter ε > 0 small enough, that mathematically
gives rise to a singular perturbation problem. Applying the so-called aggregation of variables
method, a simplified model called the aggregated model is constructed. A nontrivial
mathematical task consists of comparing the asymptotic behaviour of solutions to both
problems when ε → 0+, under the assumption that the aggregated model has a compact
attractor. Applications of the method to a class of two-time reaction–diffusion models of
spatially structured population dynamics and to models with discrete spatial structure are
given.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The aim of this paper is to provide a unified approach to the treatment of a class of models of spatially structured
population dynamics whose evolution processes occur at two different time scales: a slow one for the demography and
a fast one for the migrations. In the setting of the C0-semigroup theory, we will consider a general formulation of some
semilinear evolution problems in which the two-time scales are represented by a parameter ε > 0 small enough that
mathematically gives rise to a singular perturbation problem and to which the so-called aggregation of variables method can
be applied. This method allows the construction of a simplified model called the aggregated model, the proof of comparison
results between the behaviour of solutions to both problems being a nontrivial mathematical task, so that conclusions on
the initial complex model could be deduced from an analysis of the aggregated one.

In this work we provide a method to construct the aggregated model of an abstract two-time semilinear evolution
equation defined on a Banach space, establishing a general comparison result in the case where the simplified model
has a local compact attractor. We illustrate the method with some applications to two-time reaction–diffusion models of
spatially structured populations.

In recent decades there has been a lot of interest in spatial dynamics of ecological systems (see [10,26,32], among others),
giving rise to several ways to introduce space in mathematical models of population dynamics. A first approach consists of
considering a discrete space: the environment is considered as a set of discrete patches connected by migration and the
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evolution processes are described by a set of ordinary differential equations (O.D.E.) taking into account local interactions
on each patch (birth, death, trophic interactions) and migration terms describing patch changes. Most models consider the
simplest case of density-independent migrations (see [1,19,29]) and, to our knowledge, still, few works have addressed
the effects of density-dependent dispersal. We could, nevertheless, cite the following ones: [3,2,9,20]. In a more recent
work [21], some of us considered a predator-prey model with two patches connected by density-dependent migrations.
Assuming that prey would be more likely to leave a patch when the local patch predator density is large and as well
predators would rather stay on a patch when the local prey density is large, the model shows that density-dependent
migrations have important effects on the dynamics and the stability of the prey-predator community.

This discrete patch approach is limited by the number of patches that can be considered, since it is linked with the
number of equations of the model; indeed, most models consider typically two patches connected by migrations. However,
in more realistic cases, the environment cannot be limited to a system of few patches. In order to be able to take into
account a big number of discrete patches, several authors introduced two-time scales in the model: a fast time scale corre-
sponding to patch changes and a slow one associated with local interactions in each patch [30]. Aggregation methods can
take advantage of these different time scales to reduce the complexity of an initial model formulated as a large system of
nonlinear O.D.E., allowing the construction of a reduced model governed by a few global variables, keeping the individual
features of the dynamics, and mathematically is more tractable [25,24]. To our knowledge, perfect and approximate aggre-
gation methods were introduced for the first time in population dynamics in [17] and [18] and we refer the reader to [5]
and [6] as good and recent reviews of these methods and their applications to different aspects of theoretical ecology.

Another way to introduce the spatial structure in mathematical modelling consists of considering a continuous space,
which usually leads to reaction–diffusion models, formulated as a set of partial differential equations (P.D.E.). The aim of
this paper is to extend aggregation methods to this setting. In particular, we will consider continuously spatially distributed
populations in which the diffusion takes place at a faster time scale than local growth. Choosing the total population as
a new variable, we can reduce the model to an O.D.E. governing the dynamics without losing the individual features.

The organisation of the paper is as follows: Section 2 contains the main results of the paper. First, a general method
to construct an aggregated model that simplifies a two-time semilinear evolution equation defined on a Banach lattice is
explained. Secondly, a comparison result between the solutions to both problems is established: the existence of a compact
attractor for the aggregated model assures the existence of a compact attractor for the perturbed model, that approaches
the aggregated one for ε > 0 small enough. Section 3 applies the general theory to reaction–diffusion models with two-
time scales, recovering in some particular cases well-known results on parabolic reaction–diffusion equations with large
diffusivity. Section 4 is dedicated to make evident that the abstract formulation covers also simpler situations like models
with discrete spatial structure. The work ends with two sections of conclusions and references.

2. Aggregation of variables in a two-time semilinear evolution differential equation

Our main goal in this section is the application of the aggregation of variables method to a two-time semilinear evolution
equation defined on a Banach lattice for which the Perron–Frobenius theory on positive C0-semigroups holds. The reader
can find the main theoretical results that we will apply in Refs. [4,23,27,34], among others.

To be precise, let us consider the following Cauchy problem for an abstract semilinear parabolic differential equation
defined on a Banach lattice (X,‖ · ‖X ):

(CP)ε

{
n′
ε(t) = 1

ε
Anε(t) + F

(
nε(t)

)
, t > 0,

nε(0) = n0

where ε > 0 is a small parameter and we assume that operators A and F satisfy the following hypotheses:

Hypothesis 1. The operator A : D(A) ⊂ X −→ X is the infinitesimal generator of a C0-semigroup {T0(t)}t�0 defined on X .

Hypothesis 2. The nonlinear operator F : X −→ X is locally Lipschitz continuous. That is, for each γ > 0 there exists a
constant Lγ > 0 such that for each ϕi ∈ X with ‖ϕi‖X � γ , i = 1,2, the following holds:∥∥F (ϕ1) − F (ϕ2)

∥∥
X � Lγ ‖ϕ1 − ϕ2‖X .

With the help of the variation of constants formula, the differential problem (CP)ε can be transformed into the integral
equation

nε(t) = Tε(t)n0 +
t∫

0

Tε(t − σ)
(

F
(
nε(σ )

))
dσ , t � 0 (1)

where we have introduced the rescaled semigroup Tε(t) := T0((1/ε)t), which takes into account the factor 1/ε of the model.
As usual, the notation C([0, T ]; X) (T > 0) represents the Banach space of continuous functions n : [0, T ] −→ X , endowed

with the norm ‖n‖C := supt∈[0,T ]‖n(t)‖X . Then, a classical solution to (CP)ε is a function nε ∈ C([0, T ]; X) for some T > 0
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such that nε is continuously differentiable on (0, T ), nε(t) ∈ D(A) for t > 0, and satisfies (CP)ε . A function nε ∈ C([0, T ]; X)

which satisfies (1) for t ∈ [0, T ] is called a mild solution to (CP)ε .
The standard theory on abstract semilinear parabolic differential equations can be applied, yielding the following result,

which is an immediate consequence of Theorems 6.1.4 and 6.1.5 [27]:

Theorem 1. Under Hypotheses 1 and 2, for each initial data n0 ∈ X there exists a unique nε mild solution to (CP)ε defined on a
maximal interval [0, Tmax), Tmax > 0. Moreover, if Tmax < +∞, then limt→Tmax−‖nε(t)‖X = +∞.

If F is continuously Fréchet-differentiable and the initial data n0 ∈ D(A), then nε is the classical solution to (CP)ε .

2.1. Construction of an aggregated model

With the help of the theory of positive C0-semigroups we will proceed to reduce the abstract evolution equation to an
ordinary differential equation whose solutions serve to approximate the initial complex dynamics, for ε > 0 small enough. As
we are interested in covering population dynamics models that involve several populations, previously we establish a vector
formulation of the so-called perturbed problem (CP)ε . That is, in all this paper we will assume that X := Eq , q � 1, where
(E,‖ ·‖E) is a Banach lattice and X is endowed with the product norm. Moreover we also assume that A := diag(A1, . . . , Aq)

where A j : D(A j) ⊂ E −→ E is the infinitesimal generator of a C0-semigroup {T0 j(t)}t�0 defined on E , j = 1, . . . ,q, so that
T0(t) := diag(T01(t), . . . , T0q(t)). Then, we impose the following condition, that will become essential in the subsequent
development:

Hypothesis 3. For each j = 1, . . . ,q, the semigroup {T0 j(t)}t�0 is eventually compact, positive and irreducible.
Moreover, the spectral bound of A j , s(A j) := sup{Reλ, λ ∈ σ(A j)}, satisfies that s(A j) = 0. As usual, σ(A j) stands for

the spectrum of operator A j .

The main results concerning our work are summarised in the following theorem (see [4,23]):

Theorem 2. Under Hypotheses 1 and 3, for each j = 1, . . . ,q the following hold:

i) s(A j) = 0 is an isolated point of σ(A j) which is strictly dominant in real part. Therefore, there exists α∗
j > 0 such that

σ(A j) = {0} ∪ Λ j; Λ j ⊂ {
z ∈ C; Re z < −α∗

j

}
.

ii) dim ker A j = 1 and there exist μ j > 0, μ j ∈ ker A j and a strictly positive functional μ∗
j ∈ ker A∗

j such that 〈μ∗
j ,μ j〉 = 1, where

A∗
j is the adjoint operator of A j and 〈·,·〉 stands for the duality (E∗, E).

iii) There exists a direct sum decomposition

E = ker A j ⊕ S j; S j := Im A j (2)

which reduces A j and the semigroup {T0 j(t)}t�0 . That is, ker A j and S j are closed invariant subspaces under A j and T0 j(t),

t � 0. Moreover, σ(A jS ) = Λ j and ‖T jS (t)‖ � M S e−α∗
j t , t > 0, where A jS and T jS (t) represent respectively the restriction of A j

and T0 j(t) to S j .
iv) In the direct sum decomposition (2) we have

Im A j = {
ϕ ∈ E; 〈

μ∗
j ,ϕ

〉 = 0
}

and the associated projection onto ker A j is given by

∀ψ ∈ E, ΠA jψ := 〈
μ∗

j ,ψ
〉
μ j .

In turn, these results can be adapted to the product space X , yielding the following:

a) Set α∗ := min(α∗
1 , . . . ,α∗

q ) > 0. Then,

σ(A) = {0} ∪ Λ; Λ ⊂ {
z ∈ C; Re z < −α∗}.

b) dim ker A = q and ker A is spanned by the set {(μ1,0, . . . ,0)T , . . . , (0,0, . . . ,μq)
T }.

c) The direct sum decomposition

X = ker A ⊕ S; S := Im A (3)

reduces A and the semigroup {T0(t)}t�0. Moreover, σ(A S) = Λ and ‖T S (t)‖ � M S e−α∗t , t > 0, where A S and T S (t)
represent respectively the restriction of A and T0(t) to S .
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d) In the direct sum decomposition (3) we have

Im A = {
ϕ := (ϕ1, . . . ,ϕq)

T ∈ X; 〈
μ∗

j ,ϕ j
〉 = 0, j = 1, . . . ,q

}
and the associated projection onto ker A is given by

∀ψ := (ψ1, . . . ,ψq)
T ∈ X, ΠAψ := (〈

μ∗
1,ψ1

〉
μ1, . . . ,

〈
μ∗

q,ψq
〉
μq

)T
.

Notice that (CP)ε is in fact a system of q semilinear evolution equations. To be precise, since nε(t) := (n1
ε(t), . . . ,nq

ε(t))
T

and also F (ϕ) := (F1(ϕ), . . . , Fq(ϕ))T where each F j : X −→ E is a locally continuous Lipschitz operator, the perturbed
problem can be written as

(
n j
ε

)′
(t) = 1

ε
A jn

j
ε(t) + F j

(
nε(t)

)
, j = 1, . . . ,q.

The underlying idea in the construction of an aggregated model consists of projecting the dynamics of (CP)ε onto ker A.
To this end, we choose q new variables called global variables defined by

N j
ε(t) := 〈

μ∗
j ,n j

ε(t)
〉
, j = 1, . . . ,q; Nε(t) := (

N1
ε(t), . . . , Nq

ε(t)
)T ∈ Rq

which satisfy

(
N j

ε

)′
(t) = 〈

μ∗
j ,

(
n j
ε

)′
(t)

〉 = 〈
μ∗

j ,
1

ε
A jn

j
ε(t)

〉
+ 〈

μ∗
j , F j

(
nε(t)

)〉
= 〈

μ∗
j , F j

(
nε(t)

)〉
, j = 1, . . . ,q.

Notice that the right-hand side of these equations depends on nε(t). To avoid this difficulty, we substitute it by its
projection onto ker A:

n j
ε(t) ≈ N j(t)μ j, j = 1, . . . ,q

so that we approximate the initial perturbed model, which is a functional differential equation defined on a Banach lattice,
by the aggregated model which is a system of coupled nonlinear ordinary differential equations (O.D.E.) in Rq:(

N j)′
(t) = 〈

μ∗
j , F j

((
N1(t)μ1, . . . , Nq(t)μq

)T )〉
, j = 1, . . . ,q

completed with the initial value:

N j(0) = 〈
μ∗

j ,n j
ε(0)

〉 = 〈
μ∗

j ,n j
0

〉
, j = 1, . . . ,q.

Hypothesis 2 assures that the general theory on solutions to O.D.E. applies to the aggregated model.
To simplify, let us introduce the notations:

N(t)μ := (
N1(t)μ1, . . . , Nq(t)μq

)T ; 〈
μ∗,ϕ

〉 := (〈
μ∗

1,ϕ1
〉
, . . . ,

〈
μ∗

q,ϕq
〉)T

.

Then, the aggregated model can be written as

N ′(t) = 〈
μ∗, F

(
N(t)μ

)〉; N(0) = 〈
μ∗,n0

〉
. (4)

2.2. Comparison result between the asymptotic behaviour of solutions to (CP)ε and the aggregated model

The goal of this section is to derive comparison results between the solutions to the perturbed and the aggregated
models that allow us to conclude that, for ε → 0+ , the asymptotic behaviour of solutions to (CP)ε can be approximated
by the behaviour of solutions to the aggregated model. To be precise, assuming that the aggregated model has a compact
attractor, we will show that the perturbed model has, for ε > 0 small enough, a compact attractor which is close to the
aggregated one. This result needs some a priori estimations on the solutions to both problems that we will prove under
suitable additional smoothness conditions for the semigroup {T0(t)}t�0.

Recall (see [12]) that a set A ⊂ Rq is a compact attractor for the aggregated model if it is an invariant compact set and
there exists a neighbourhood U of A such that the ω-limit set of U is A.

Roughly speaking, we start by showing that for ε > 0 small enough, the solutions to (CP)ε which start close to Aμ :=
{Nμ; N ∈ A}, remain close to it for all t � 0. To this end, we project the perturbed equation onto ker A and S .

According to the decomposition given by (3), we can write the solution to (CP)ε as

nε(t) = Nε(t)μ + ρε(t), t > 0
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where 〈μ∗,ρε(t)〉 = 0, ∀t > 0. This implies that 〈μ∗,ρ ′
ε(t)〉 = 0, ∀t > 0, which in turn yields the following decomposition

of (CP)ε:{
N ′

ε(t) = 〈
μ∗, F

(
Nε(t)μ + ρε(t)

)〉
,

ρ ′
ε(t) = (1/ε)A Sρε(t) + F S

(
Nε(t)μ + ρε(t)

)
where A S , F S stand for the projection of operators A and F on S , respectively.

Decomposing the initial data as n0 = N0μ + ρ0, and using the variation of constants formula, we can write the mild
version of the second equation in the above system:

ρε(t) = TεS(t)ρ0 +
t∫

0

TεS(t − σ)F S
(
Nε(σ )μ + ρε(σ )

)
dσ (5)

where TεS (t) := T S ((1/ε)t).
For each W (A) neighbourhood of A in Rq and δ > 0, we use the following notation to represent a neighbourhood of Aμ

in X :

N
(
W (A); δ) := {

Nμ + ρ; N ∈ W (A), ρ ∈ S, ‖ρ‖X < δ
}
.

The following proposition contains a result that will be relevant for our purposes:

Proposition 1. Under Hypotheses 1, 2 and 3, assume that there exists a compact attractor A for the aggregated model (4). Then,
fixing any neighbourhood W (A) and δ > 0, there exist a neighbourhood W ∗(A) ⊂ W (A), δ∗ ∈ (0, δ) and ε∗ > 0 such that for all
ε ∈ (0, ε∗) and n0 = N0μ + ρ0 ∈ N (W ∗(A); δ∗), the solution to (CP)ε nε(t) := Nε(t)μ + ρε(t) such that nε(0) = n0 is defined for
all t � 0 and satisfies the following:

i) nε(t) ∈ N (W ∗(A); δ);
ii) ‖ρε(t)‖X � C1e−βt/ε‖ρ0‖E + C2ε

for some positive constants C1, C2 > 0 (nondependent on W (A), δ) and any β ∈ (0,α∗), where α∗ > 0 is the constant mentioned in
Theorem 2.

Proof. First of all, notice that (see [11]) there exist a bounded neighbourhood of A, U0(A) ⊂ Rq and a continuous Lipschitz
scalar function V : U0(A) −→ R such that ∀N ∈ U0(A) the following hold:

i) V (N∗) = 0, ∀N∗ ∈ A;
ii) there exist two real-valued nonnegative and continuous functions a(r), b(r), with a(r) > 0 if r > 0, b(0) = 0, a(r) non-

decreasing such that a(dist(N, A)) � V (N) � b(dist(N, A));
iii) V̇ (4)(N) � −V (N)

where V̇ (4)(N) represents the derivative of V along the solutions to (4). That is

V̇ (4)(N0) := lim sup
h→0+

V (N(h; N0)) − V (N0)

h

with N(t; N0) being the solution to (4) such that N(0; N0) = N0.
Let W (A), δ > 0, be fixed. Without loss of generality, we can assume that W (A) is open and bounded with W (A) ⊂

U0(A) and also that 0 < δ < δ0, for some δ0 > 0 fixed. Condition (ii) assures that k0 := min{V (N), N ∈ ∂W (A)} satisfies
that k0 > 0, where ∂W (A) represents the boundary of W (A), which is a compact set in Rq . Choosing η ∈ (0,k0), we define
W ∗(A) := {N ∈ W (A); V (N) < η}, which is an open neighbourhood of A such that A ⊂ W ∗(A) ⊂ W (A).

Then, let us consider the solution to (CP)ε nε(t) = Nε(t)μ + ρε(t) corresponding to an initial data n0 = N0μ + ρ0 ∈
N (W ∗(A); δ∗), for any δ∗ ∈ (0, δ), which is defined on some maximal interval [0, Tmax). By continuity of solutions, there
exists t > 0 such that for all s ∈ [0, t], we have nε(s) ∈ N (W ∗(A); δ∗).

To simplify the notation we will denote by Ci , i = 1,2, . . . the positive constants that appear in the calculations and
whose specific values are not relevant. Since the solution nε(s), s ∈ [0, t], belongs to the fixed bounded set N (U0(A); δ0),
Hypothesis 2 together with the compactness of A provide the following estimation, independent of W (A), δ and ε:∥∥F

(
nε(s)

)∥∥
X � sup

N∗∈A

∥∥F
(
Nε(s)μ + ρε(s)

) − F
(
N∗μ

)∥∥
X + sup

N∗∈A

∥∥F
(
N∗μ

)∥∥
X

� C1 sup
N∗∈A

∣∣Nε(s) − N∗∣∣ + C2
∥∥ρε(s)

∥∥
X + sup

N∗∈A

∥∥F
(
N∗μ

)∥∥
X

� C1 + C2
∥∥ρε(s)

∥∥ . (6)
X
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Then, formula (5) together with Theorem 2(iii) yield:

∥∥ρε(s)
∥∥

X � M S e−α∗s/ε‖ρ0‖X + M S

s∫
0

e−α∗(s−σ )/ε
∥∥F S

(
Nε(σ )μ + ρε(σ )

)∥∥
X dσ

� M S e−α∗s/ε‖ρ0‖X + C1ε + C2

s∫
0

e−α∗(s−σ )/ε
∥∥ρε(σ )

∥∥
X dσ .

Let β ∈ (0,α∗) be a fixed constant and set

vε(s) := ∥∥ρε(s)
∥∥

X eβs/ε, Wε(s) := sup
τ∈[0,s]

vε(τ ).

Then, we have

vε(s) � M S e−(α∗−β)s/ε‖ρ0‖X + C1εeβs/ε + C2εWε(s)

and therefore

Wε(s) = sup
τ∈[0,s]

vε(τ ) � M S‖ρ0‖X + C1εeβs/ε + C2εWε(s).

Choosing ε0 so that C2ε0 < 1, we have ∀ε ∈ (0, ε0):

Wε(s) � M S

1 − C2ε
‖ρ0‖X + C1ε

1 − C2ε
eβs/ε � C3‖ρ0‖X + C4εeβs/ε

which finally provides the estimation:∥∥ρε(s)
∥∥

X � C1‖ρ0‖X e−βs/ε + C2ε, s ∈ [0, t], 0 < ε < ε0. (7)

Now we proceed to estimate the derivative of V along the solution Nε(s), that is

V̇ (ε)

(
Nε(s)

) := lim sup
h→0+

V (Nε(h; Nε(s))) − V (Nε(s))

h

� lim sup
h→0+

V (N(h; Nε(s))) − V (Nε(s))

h
+ lim sup

h→0+

V (Nε(h; Nε(s))) − V (N(h; Nε(s)))

h

� V̇
(
Nε(s)

) + C1
∥∥F

(
Nε(s)μ + ρε(s)

) − F
(
Nε(s)μ

)∥∥
X

� V̇
(
Nε(s)

) + C1
∥∥ρε(s)

∥∥
X

� −V
(
Nε(s)

) + C1‖ρ0‖X + C2ε (8)

which leads to the following inequality, valid ∀s ∈ [0, t] and ∀ε ∈ (0, ε0):

V
(
Nε(s)

)
� e−s V (N0) + (

C1‖ρ0‖X + C2ε
)(

1 − e−s). (9)

Choosing δ∗ > 0, ε∗ ∈ (0, ε0) small enough so that C1δ
∗ + C2ε

∗ < min(η, δ), define

t∗ := sup
{

t; Nε(s) ∈ W ∗(A), ∀s ∈ [0, t]}
being evident that t∗ ∈ (0, Tmax]. Assume that t∗ < +∞. If t∗ = Tmax, then limt→t∗−‖nε(t)‖X = +∞, which is not possi-
ble since nε(t) belongs to a bounded set. If t∗ < Tmax, then nε(t∗) is defined and (9) implies that V (Nε(t∗)) < η, which
contradicts the definition of t∗ . Therefore, t∗ = +∞, which in turn implies that nε(t) is defined for all t � 0 and that
Nε(t) ∈ W ∗(A), together with ‖ρε(t)‖X < δ, for all t � 0, as we wanted to prove. �

The next step consists of proving that there exists a set of initial conditions whose omega-limit set is a compact attractor
for (CP)ε . To this end we need to assure the precompactness of the corresponding positive orbits, which we will do imposing
supplementary smoothness conditions to the semigroup {T0(t)}t�0 so that suitable results on sectorial operators could be
applied. We refer the reader to [16] and [27] for the general theory on analytic semigroups. To be precise, we will assume
the following:

Hypothesis 4. The semigroup {T0(t)}t�0 is an analytic semigroup on X . Moreover, the infinitesimal generator A has compact
resolvent.
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The direct sum decomposition (3) allows us to assure that for each β � 0, the fractional power operator (−A S )
β can be

defined on a domain Xβ
S ⊂ X which is a Banach space with respect to the norm ‖ϕS‖β := ‖(−A S )

βϕ‖X .
To facilitate the reading, we summarise in the following theorem the main theoretical results that we will need (see [16,

Th. 1.4.8], [27, Th. 6.1.3]):

Theorem 3. For each β � 0, t > 0, the following hold:

i) There exists a constant Cβ > 0 such that ∀ϕS ∈ Xβ
S , ‖ϕS‖X � Cβ‖ϕS‖β . Moreover, for β > 0, the embedding Xβ

S ⊂ S is compact.

ii) TεS (t)(S) ⊂ Xβ
S and TεS (t)(−A S )

βϕS = (−A S )
β TεS (t)ϕS , ϕS ∈ Xβ

S .
iii) (−A S )

β TεS (t)ϕS is a bounded linear operator on S and moreover

∥∥(−A S)
β TεS(t)ϕS

∥∥
X � Mβ

(
t

ε

)−β

e−α∗t/ε‖ϕS‖X .

If n0 ∈ X is an initial condition such that the corresponding solution to (CP)ε , nε(t;n0), exists on [0,+∞), we define the
positive orbit as γ

(ε)
+ (n0) := {nε(t;n0); t � 0} and also, for a set B ⊂ X of such initial conditions, γ

(ε)
+ (B) := ⋃

n0∈B γ
(ε)
+ (n0).

Then we have the following:

Proposition 2. Keeping the hypotheses and notations of Proposition 1 and assuming Hypothesis 4, for each β ∈ (0,1), ε ∈ (0, ε∗), the
set γ

(ε)
+ (N β(W ∗(A); δ∗)) is a precompact set in X. We have introduced the notation:

N β
(
W ∗(A); δ∗) := {

n0 = N0μ + ρ0; N0 ∈ W ∗(A), ρ0 ∈ Xβ
S , Cβ‖ρ0‖β < δ∗}

where Cβ > 0 is the constant mentioned in Theorem 3(i).

Proof. It is evident that Aμ ⊂ N β(W ∗(A); δ∗) ⊂ N (W ∗(A); δ∗), and therefore for each initial value n0 ∈ N β(W ∗(A); δ∗),
Proposition 1 assures that the positive orbit γ+(n0) is defined. Moreover Nε(t;n0) ∈ U0(A) and thus there exists a constant
R0 > 0 such that

sup
{∣∣Nε(t;n0)

∣∣, t � 0, n0 ∈ N β
(
W ∗(A); δ∗)} � R0.

On the other hand, since ρ0 ∈ Xβ
S , from Theorem 3(ii)–(iii) and (5)–(6), we have for all β ∈ (0,1):

∥∥ρε(t;n0)
∥∥

β
�

∥∥TεS(t)(−A S)
βρ0

∥∥
X + Mβ

t∫
0

[
(t − σ)/ε

]−β
e−α∗(t−σ )/ε

∥∥F S
(
nε(σ ;n0)

)∥∥
X dσ

� M S e−α∗t/ε‖ρ0‖β + Mβ

(
C1 + C2δ

∗) t∫
0

[
(t − σ)/ε

]−β
e−α∗(t−σ )/ε dσ

� C1βδ∗ + C2βε∗ + C3βε∗δ∗

which means that for each β ∈ (0,1) there exists a constant R∗ > 0 such that ∀ε ∈ (0, ε∗),

sup
{∥∥ρε(t;n0)

∥∥
β
; t � 0, n0 ∈ N β

(
W ∗(A); δ∗)} � R∗.

Then, the precompactness of γ
(ε)
+ (N β(W ∗(A); δ∗)) is an immediate consequence of Theorem 3(i). �

We can now establish the main result of this section:

Theorem 4. Under Hypotheses 1, 2, 3, 4, assume that there exists a compact attractor A for the aggregated model (4). Then, there
exists ε∗

0 > 0 such that ∀ε ∈ (0, ε∗
0), there exists a compact attractor Aε for the perturbed model (CP)ε . Moreover we have Aε ⊂

N (W (A); δ) for each neighbourhood of Aμ in X and ε > 0 small enough. Also diam(S ∩ Aε) → 0 (ε → 0+).

Proof. It will be a direct consequence of Propositions 1 and 2. Let us define Aε as the omega-limit set of the set
N β(W ∗(A); δ∗) introduced in Proposition 2. As an immediate consequence of this proposition (see [12, Lemma 3.1.2]),
we can assure that Aε is a nonempty, connected and compact set in X which is invariant with respect to (CP)ε for
ε ∈ (0, ε∗) and attracts N β(W ∗(A); δ∗). Set n∗

ε = N∗
εμ + ρ∗

ε ∈ Aε , for ε ∈ (0, ε∗). Straightforward calculations show
that there exists a constant C(δ∗;β) > 0 such that ‖ρ∗

ε‖β � εC(δ∗;β) and also that N∗
ε ∈ W ∗(A). Therefore, choosing

ε∗ � min(ε∗, δ∗/(Cβ C(δ∗;β))), we have for each ε ∈ (0, ε∗) that ‖ρ∗
ε‖X � C1ε and also that Aε ⊂ N β(W ∗(A); δ∗). This
0 0



JID:YJMAA AID:15203 /FLA [m3G; v 1.46; Prn:6/09/2010; 10:50] P.8 (1-17)

8 E. Sánchez et al. / J. Math. Anal. Appl. ••• (••••) •••–•••
means that Aε is a compact attractor for (CP)ε and moreover that diam(S ∩ Aε) → 0 when ε → 0+ , as we wanted to
prove. �

We conclude this section by considering a particular case in which ker A is invariant under operator F . This assumption
allows us to improve the general result established in Theorem 4. To be precise, we have the following:

Corollary 1. Under hypotheses of Theorem 4, let us assume that F (ker A) ⊂ ker A. Then, for all ε ∈ (0, ε∗
0), Aμ is a compact attractor

for the perturbed model (CP)ε .

Proof. First of all, notice that Aμ is an invariant set for (CP)ε . On the other hand, notice that estimation (6) can be
substituted by∥∥F S

(
nε(s)

)∥∥
X = ∥∥F S

(
Nε(s)μ + ρε(s)

) − F S
(
Nε(s)μ

)∥∥
X � C1

∥∥ρε(s)
∥∥

X

which in turn, modifies the estimation (ii) in Proposition 1 giving:

(ii)∗
∥∥ρε(t)

∥∥
X � C1e−βt/ε‖ρ0‖X

and therefore Aε ⊂ ker A.
Moreover, and referring to the solutions considered in Proposition 1, the component Nε(t) satisfies an asymptotically

autonomous O.D.E.:

N ′
ε(t) = 〈

μ∗, F
(
nε(t)

)〉 = 〈
μ∗, F

(
Nε(t)μ

)〉 + G
(
t, Nε(t)

)
where∣∣G

(
t, Nε(t)

)∣∣ = ∣∣〈μ∗, F
(
nε(t)

) − F
(
Nε(t)μ

)〉∣∣ � C1
∥∥F

(
nε(t)

) − F
(
Nε(t)μ

)∥∥
X

� C1
∥∥ρε(t)

∥∥
X � C1e−βt/ε → 0 (t → +∞).

Then (see [11,31]) Aε is a union of invariant sets for the aggregated model, which belong to N β(W ∗(A); δ∗). But all such
invariant sets must belong to Aμ, what completes the proof. �
3. Two-time scales in reaction–diffusion models of population dynamics

In this section we illustrate the general aggregation of variables method described in the previous section by applying
it to a reaction–diffusion system which represents the dynamics of several continuously spatially distributed populations
whose evolution processes occur at two different time scales: a slow one for the demography and a fast one for migrations.
Let us consider q (q � 1) populations living in a spatial region Ω ⊂ Rp (p � 1), where Ω is a nonempty bounded, open
and connected set with smooth boundary ∂Ω ∈ Ck , k � 1. Let ni(x, t), i = 1, . . . ,q, be their spatially structured population
densities i.e.,

∫
Ω0

ni(x, t)dx represents the number of individuals of population i that at time t are occupying the region

Ω0 ⊂ Ω and set n(x, t) := (n1(x, t), . . . ,nq(x, t))T .
We assume that the demography is given by a nonlinear reaction term f (x,n) that satisfies the following regularity

conditions:

Hypothesis 5. The function f :Ω × Rq −→ Rq , f := ( f1, . . . , fq), is continuous and satisfies the following:
There exists a real-valued continuous positive function h defined on Ω × Rq × Rq such that ∀x ∈ Ω and ∀u, v ∈ Rq:∣∣ f (x, u) − f (x, v)

∣∣ � h(x, u, v)|u − v|.

We also assume a linear diffusion process in Ω for each population, with coefficient Di ∈ C2(Ω), Di(x) � d∗
i > 0, i =

1, . . . ,q, that occurs at a fast time scale determined by a parameter ε > 0 small enough. A standard application of the
balance law leads to the following two-time reaction–diffusion system for the population densities, with i = 1, . . . ,q:

∂ni

∂t
(x, t) = 1

ε
div

(
Di(x)grad ni(x, t)

) + f i
(
x,n(x, t)

)
, x ∈ Ω, t > 0 (10)

completed with Neumann boundary conditions:

∂ni

∂ν
(x, t) = 0, x ∈ ∂Ω, t > 0 (11)

which indicates that the spatial domain is isolated from the external environment, plus initial conditions:

n(x,0) = n0(x), x ∈ Ω, n0(x) := (
n0(x), . . . ,n0

q(x)
)T

. (12)
1
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Rescaling the time as t = ετ in Eqs. (10) and making ε → 0+ , we obtain the dynamics at a fast time scale:

∂ni

∂τ
(x, τ ) = div

(
Di(x)grad ni(x, τ )

)
, i = 1, . . . ,q.

At this fast time scale the total population Ni(τ ) := ∫
Ω

ni(x, τ )dx satisfies that

N ′
i(τ ) =

∫
Ω

div
(

Di(x)grad ni(x, τ )
)

dx =
∫

∂Ω

Di(x)
∂ni

∂ν
(x, τ )dσ = 0

which reflects the obvious result that the total population is conserved under the migration process, without taking into
account the demographic evolution. This simple idea suggests constructing a reduced model to approximate the model (10),
(11), (12), taking as global variables the total populations:

Ni(t) :=
∫
Ω

ni(x, t)dx; N(t) := (
N1(t), . . . , Nq(t)

)T
.

Integrating with respect to the space variable x on both sides of Eqs. (10), applying the Gauss Theorem and bearing in mind
the Neumann boundary conditions (11), we have

N ′
i(t) =

∫
Ω

f i
(
x,n(x, t)

)
dx, i = 1, . . . ,q. (13)

Notice that the right-hand side of Eq. (13) is expressed in terms of the density n(x, t). To avoid this difficulty, we will
look for an approximation of n(x, t) in terms of the total populations. To this end, we assume that the fast dynamics reach
an equilibrium. Recall that the only equilibria of the fast dynamics are the constants and since the total population is
conserved under the fast dynamics, the initial conditions (12) fix the values of the stationary states for the fast dynamics:∫

Ω

n0
i (x)dx = n∗

i vol(Ω) �⇒ n∗
i = 1

vol(Ω)

∫
Ω

n0
i (x)dx, i = 1, . . . ,q

where vol(Ω) is the Lebesgue measure of the domain Ω . That is, in absence of demography, the stationary state of the
population is a homogeneous distribution on the spatial region.

Then, coming back to the construction of an approximated model for the dynamics of the total population, the above
considerations suggest the following approximation:

ni(x, t) ≈ Ni(t)

vol(Ω)
, i = 1, . . . ,q

which yields the aggregated model of (10), (11), (12):

N ′(t) = F
(
N(t)

)
, N(0) = N0 :=

∫
Ω

n0(x)dx (14)

where F : Rq −→ Rq , F := (F1, . . . , Fq) is the function defined by

∀u ∈ Rq, F (u) :=
∫
Ω

f

(
x,

u

vol(Ω)

)
dx.

To apply the comparison result between both models given by Theorem 4, we have to formulate (10), (11), (12) as an
abstract evolution equation in the setting of the C0-semigroup theory. To this end, we choose as state space E := C(Ω), the
Banach space of continuous real-valued functions defined on Ω , endowed with the supremum norm ‖ϕ‖∞ := supx∈Ω |ϕ(x)|,
so that X := [C(Ω)]q endowed with the product norm.

We need to specify the conditions that assure that the linear diffusion operator in Eqs. (10) together with a Neumann
boundary condition is the infinitesimal generator of a C0-semigroup on C(Ω). According to [22], let us consider the linear
operator Âi defined by

( Âiϕ)(x) := div
(

Di(x)gradϕ(x)
); x ∈ Ω

with domain:

D( Âi) :=
{
ϕ ∈ C2(Ω); sup

x,y∈Ω
x�=y

|Dmϕ(x) − Dmϕ(y)|
‖x − y‖α

< +∞,
∂ϕ

∂ν
= 0 in ∂Ω

}

where 0 < α < 1 and Dmϕ , m := (m1, . . . ,mN) represents the partial derivatives of ϕ of order 2 = m1 + · · · + mN .
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Notice that Âi is a strongly elliptic operator.
We refer to [22,23,27] for the general theory which provides the main results that we need, explained in the following

proposition.

Proposition 3. (See [22].) The operator Ai defined as the closure in C(Ω) of operator Âi is the infinitesimal generator of an analytic
and compact C0-semigroup {T0i(t)}t�0 on C(Ω).

Moreover, the semigroup {T0i(t)}t�0 satisfies the following:

i) T0i(t)(C+(Ω)) ⊂ C+(Ω), t � 0, where C+(Ω) is the subset of real-valued nonnegative continuous functions on Ω (see [33,28]).
ii) {T0i(t)}t�0 is an irreducible semigroup on C(Ω) (see [23]).

Finally, let us introduce the operator F : X −→ X defined by

∀ϕ := (ϕ1, . . . ,ϕq)
T ∈ X, F (ϕ)(x) := f

(
x,ϕ(x)

)
, x ∈ Ω. (15)

Bearing in mind the above definition of operator A := diag(A1, . . . , Aq) and making the usual identification n(·, t) :=
n(t)(·) we can write (10), (11), (12) as the abstract Cauchy problem (CP)ε of the previous section, on the Banach space X . An
immediate consequence of Hypothesis 5 is that operator F satisfies Hypothesis 2 and Proposition 3 assures that operator A
satisfies all the assumptions of Theorem 4 and thus its conclusion holds, providing an approximation result for the behaviour
of solutions to the initial two-time reaction–diffusion model through the solutions to the aggregated model.

As a simple illustration, we apply the above ideas to a predator-prey model with fast constant diffusion and population
growth of the preys given by a logistic law. To be precise, we are considering the model:

(FPP)

⎧⎪⎪⎨
⎪⎪⎩

∂n

∂t
(x, t) = Dn

ε
�n(x, t) + r(x)n(x, t)

[
1 − n(x, t)

K (x)

]
− a(x)n(x, t)p(x, t),

∂ p

∂t
(x, t) = D p

ε
�p(x, t) + b(x)n(x, t)p(x, t) − μ(x)p(x, t)

with x ∈ Ω , t > 0. The model is completed with Neumann boundary conditions:

∂n

∂ν
(x, t) = ∂ p

∂ν
(x, t) = 0, x ∈ ∂Ω, t > 0

and initial conditions:

n(x,0) = n0(x), p(x,0) = p0(x), x ∈ Ω

where n(x, t) and p(x, t) represent the population densities of preys and predators respectively.
The global variables are the total populations of predators and preys:

N(t) :=
∫
Ω

n(x, t)dx; P (t) :=
∫
Ω

p(x, t)dx

which satisfy the following system, which is obtained by integrating on Ω on both sides of system (FPP):⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N ′(t) =
∫
Ω

r(x)n(x, t)

(
1 − n(x, t)

K (x)

)
dx −

∫
Ω

a(x)n(x, t)p(x, t)dx,

P ′(t) =
∫
Ω

b(x)n(x, t)p(x, t)dx −
∫
Ω

μ(x)p(x, t)dx.
(16)

Since the right-hand side of Eqs. (16) is expressed in terms of the densities n(x, t), p(x, t), we make the approximation:

n(x, t) ≈ N(t)

vol(Ω)
; p(x, t) ≈ P (t)

vol(Ω)

which leads to:

(AM)

⎧⎨
⎩ N ′(t) = r∗N(t)

(
1 − N(t)

K ∗

)
− a∗N(t)P (t),

P ′(t) = b∗N(t)P (t) − μ∗ P (t)

where
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r∗ := 1

vol(Ω)

∫
Ω

r(x)dx; K ∗ := vol(Ω)
∫
Ω

r(x)dx∫
Ω

(r(x)/K (x))dx
;

a∗ := 1

(vol(Ω))2

∫
Ω

a(x)dx; b∗ := 1

(vol(Ω))2

∫
Ω

b(x)dx;

μ∗ := 1

vol(Ω)

∫
Ω

μ(x)dx.

Summing up, the aggregated model is a classical predator-prey model with logistic grow for the prey, in which the initial
spatial structure has been taken into account in the parameters.

If μ∗ < b∗K ∗ , direct calculations show that (AM) has a unique locally asymptotically stable positive equilibrium P ∗ :=
(μ∗/b∗, (r∗/a∗)(1 − μ∗/(b∗K ∗))) and then, for ε > 0 small enough, (FPP) has a compact local attractor Aε close to P∗ .

3.1. Positive solutions to the two-time reaction–diffusion model: a comparison result

In this section we will proceed to compare when ε → 0+ the solutions to (10), (11), (12), or its abstract formula-
tion (CP)ε , with the solutions to the aggregated model (14) corresponding to the same initial data and without assuming
the existence of equilibria for the aggregated model. To this end we have to ensure the global existence of these solutions
as well as the existence of suitable bounds for the component ρε(t), which can be done assuming additional conditions
for the reaction term given by function f . In a general situation, a sufficient condition consists of assuming the existence
of a compact invariant region for the perturbed reaction–diffusion equation (see [11] and [7]). In this work we present a
slightly different situation, restricting our analysis to the comparison of positive solutions and to simplify we consider a
scalar formulation of both problems.

To be precise, in addition to Hypothesis 5 we will assume the following smoothness assumption, that is a standard
sufficient condition to eliminate blow-up of positive solutions to (CP)ε:

Hypothesis 6. The function f :Ω × R −→ R satisfies the following:

i) f (x,0) = 0, ∀x ∈ Ω .
ii) There exists a constant C > 0 such that ∀x ∈ Ω and ∀u ∈ R with |u| � C , we have f (x, u) � 0.

• Existence and boundedness of global positive solutions to both problems

Positivity of solutions to (14) is an immediate consequence of the uniqueness of solutions together with F (0) = 0. That
is, if N0 > 0, then N(t) > 0 for all t ∈ [0, w+). Now let us show that positive solutions are defined on [0,+∞) and are
globally bounded by some constant depending on the initial data.

Lemma 1. Assume Hypotheses 5 and 6. Then, for each initial data N0 > 0, the corresponding solution N(t) to (14) is defined on
[0,+∞) and there exists a constant K (N0) > 0 such that 0 < N(t) � K (N0) for all t ∈ [0,+∞).

Proof. The proof is based on standard arguments closely related to the fact that the aggregated model is an autonomous
scalar differential equation. First of all, notice that Hypothesis 6(ii) leads to the existence of a constant C∗ > 0 such that
|u| � C∗ implies that F (u) � 0.

a) Set N0 � C∗ , so that F (N0) � 0. If F (N0) = 0, then N0 is an equilibrium point of the aggregated model and there is
nothing to prove. Therefore, assume that F (N0) < 0 and define t∗ := min{t > 0; N(s) � N0, ∀s ∈ (0, t)}.

If w+ < +∞, then t∗ < +∞ and N(t∗) = N0 so that N ′(t∗) = F (N(t∗)) = F (N0). This means that there exists δ > 0 such
that for all t ∈ (t∗, t∗ + δ) with t∗ + δ < w+ , we have N(t) < N(t∗) = N0, which is a contradiction. Consequently, w+ = +∞
and also 0 < N(t) � N0 for all t ∈ [0,+∞).

b) Set 0 < N0 < C∗ . Then, defining t∗ := min{t > 0; N(s) < C∗, ∀s ∈ (0, t)}, we can assure that t∗ ∈ (0, w+). If w+ < +∞,
then t∗ < +∞ and N(t∗) = C∗ which, as in the previous case, leads to the contradiction N ′(t∗) = F (N(t∗)) = F (C∗) � 0. That
is, w+ = +∞ and also 0 < N(t) < C∗ for all t � 0.

Choosing K (N0) := max(N0, C∗) > 0, the lemma is proved. �
Now we concentrate on nonnegative solutions to (CP)ε: we will prove a monotonicity result and global existence of

nonnegative solutions. Our arguments will follow closely those given in [8,14,15], for general reaction–diffusion equations.

Proposition 4. If the initial data n0 ∈ C(Ω) is nonnegative, then the corresponding maximal solution nε satisfies that nε(x, t) � 0,
∀x ∈ Ω , ∀t ∈ [0, Tmax).
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Proof. First of all, let us observe that applying a Green formula and bearing in mind the Neumann boundary condition, we
have ∀ϕ ∈ D( Â):∫

Ω

div
(

D(x)gradϕ(x)
)
ϕ−(x)dx = −

∫
Ω

D(x)gradϕ(x)gradϕ−(x)dx

=
∫
Ω

D(x)
∥∥gradϕ−(x)

∥∥2
dx � 0 (17)

where we have introduced the notation:

∀ϕ ∈ C(Ω), ϕ+(x) := max
(
ϕ(x),0

); ϕ−(x) := −min
(
0,ϕ(x)

)
.

Multiplying in both sides of (CP)ε by n−
ε and integrating on Ω we have∫

Ω

∂nε

∂t
(x, t)n−

ε (x, t)dx = 1

ε

∫
Ω

Anε(x, t)n−
ε (x, t)dx +

∫
Ω

F
(
nε(t)

)
(x)n−

ε (x, t)dx.

Bearing in mind that nε(x, t) = n+
ε (x, t) − n−

ε (x, t) and the estimation (17), we have

1

2

d

dt

∫
Ω

[
n−
ε (x, t)

]2
dx � −

∫
Ω

F
(
nε(t)

)
(x)n−

ε (x, t)dx �
∫
Ω

∣∣F
(
nε(t)

)
(x)

∣∣∣∣n−
ε (x, t)

∣∣dx.

Fix T ∈ (0, Tmax), T < +∞, so that ∀t ∈ [0, T ]:∣∣nε(x, t)
∣∣ � sup

t∈[0,T ]
∥∥nε(·, t)

∥∥∞ := γ (T ) < +∞.

This estimation together with Hypotheses 5 and 6(i) yield, ∀t ∈ [0, T ].∣∣F
(
nε(t)

)
(x)

∣∣ = ∣∣ f
(
x,nε(x, t)

)∣∣ = ∣∣ f
(
x,nε(x, t)

) − f (x,0)
∣∣

� R(T )
∣∣nε(x, t)

∣∣
for some constant R(T ) > 0.

Let us simplify by introducing the notation v(t) := ∫
Ω

[n−
ε (x, t)]2 dx. Then we have for t ∈ [0, T ]:

1

2
v ′(t) � R(T )

∫
Ω

∣∣nε(x, t)
∣∣∣∣n−

ε (x, t)
∣∣dx = R(T )v(t)

which leads to 0 � v(t) � v(0)e2R(T )t . The nonnegativity of the initial data n0 implies that v(0) = 0, which in turn implies
that n−

ε (x, t) = 0, ∀t ∈ [0, T ]. This equality holds for all T ∈ (0, Tmax). That is, we conclude that nε(x, t) � 0, ∀(x, t) ∈ Ω ×
[0, Tmax) as we wanted to prove. �

A straightforward modification of the above arguments leads to the following monotonicity result:

Corollary 2. Let nε , vε be two continuous solutions to (CP)ε both defined in an interval [0, T ] (T > 0), corresponding to initial data
n0, v0 ∈ C(Ω) such that n0(x) � v0(x), x ∈ Ω . Then,

∀x ∈ Ω, ∀t ∈ [0, T ], nε(x, t) � vε(x, t).

Proof. The function w(x, t) := nε(x, t) − vε(x, t) satisfies the following equation, together with a nonnegative initial data
w0(x) := n0(x) − v0(x) � 0:

w ′(t) = 1

ε
Aw(t) + F

(
nε(t)

) − F
(

vε(t)
)
.

Multiplying in both sides of that equation by w−(x, t) and integrating on Ω , similar calculations to those in Proposition
4 lead to the following inequalities:

1

2

d

dt

∫
Ω

∣∣w−(x, t)
∣∣2

dx � −
∫
Ω

∣∣F
(
nε(t)

)
(x) − F

(
vε(t)

)
(x)

∣∣∣∣w−(x, t)
∣∣dx

� R∗(T )

∫
Ω

∣∣w−(x, t)
∣∣2

dx

for some constant R∗(T ) > 0.
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Therefore

∀t ∈ [0, T ],
∫
Ω

∣∣w−(x, t)
∣∣2

dx �
(∫

Ω

∣∣w−(x,0)
∣∣2

dx

)
e2R∗(T )t = 0

which implies that w(x, t) � 0, ∀(x, t) ∈ Ω × [0, T ] as we wanted to prove. �
As a consequence we can prove the following result concerning the existence of global solutions:

Proposition 5. The continuous solutions to (CP)ε corresponding to nonnegative continuous initial data are defined on [0,+∞) and
are uniformly bounded on t and on ε > 0.

Proof. Let n0 ∈ C(Ω), n0 � 0 be an initial data to (CP)ε , let nε(·, t) be the corresponding nonnegative maximal solution
defined on [0, Tmax), and set K0(n0) > max(C,‖n0‖∞) > 0, where C > 0 is the constant mentioned in Hypothesis 6(ii).

Multiplying in both sides of (CP)ε by (nε(·, t)− K0(n0))
+ and integrating on Ω , similar calculations to those in the proof

of Proposition 4 lead to

1

2

d

dt

∫
Ω

∣∣(nε(x, t) − K0(n0)
)+∣∣2

dx �
∫
Ω

F
(
nε(t)

)
(x)

(
nε(x, t) − K0(n0)

)+
dx.

Since

0 � nε(x, t) � K0(n0) �⇒ (
nε(x, t) − K0(n0)

)+ = 0,

nε(x, t) � K0(n0) �⇒ F
(
nε(t)

)
(x) � 0

we have

1

2

d

dt

∫
Ω

∣∣(nε(x, t) − K0(n0)
)+∣∣2

dx � 0

which gives (nε(x, t) − K0(n0))
+ = 0 and then

∀(x, t) ∈ Ω × [0, Tmax), 0 � nε(x, t) � K0(n0).

This implies that Tmax = +∞ and supt�0‖nε(·, t)‖∞ � K0(n0), as we wanted to prove. �
• Comparison between the solutions to the perturbed and aggregated models

Our main goal will be to establish an approximation result for the solutions to the perturbed model in terms of that
of the aggregated model, for ε > 0 small enough. To this end, let us consider a solution to (CP)ε , nε(t) := Nε(t) + ρε(t),
corresponding to a nonnegative initial data n0 ∈ C(Ω). Since nε is nonnegative, defined on [0,+∞) and uniformly bounded
with respect to t and ε, we can introduce in the variation of constants formula (5) the bound:∥∥F S

(
nε(σ )

)∥∥∞ � C1
∥∥F

(
nε(σ )

) − F (0)
∥∥∞ � C2(n0)

∥∥nε(σ )
∥∥∞ � C3(n0)

and then, a straightforward calculation provides the following estimation, valid for t � 0, ε > 0:∥∥ρε(t)
∥∥∞ � C1e−(α∗/ε)t‖ρ0‖∞ + C2(n0)ε. (18)

The approximation result between the solutions to (CP)ε and the aggregated model (14) we are looking for in this setting
consists of comparing the solutions to both problems corresponding to the nonnegative common initial data n0. To this end,
notice that Nε(t) satisfies an O.D.E. that can be written as a perturbation of the aggregated model (14):

N ′
ε(t) = F

(
Nε(t)

) + Gε(t) (19)

where

Gε(t) :=
∫
Ω

[
f

(
x,

Nε(t)

vol(Ω)
+ ρε(t)(x)

)
− f

(
x,

Nε(t)

vol(Ω)

)]
dx.

We will proceed to estimate yε(t) := Nε(t) − N(t).
Since Lemma 1 and Proposition 5 establish the bounds:

∀t � 0, ∀x ∈ Ω,
∣∣N(t)

∣∣ � K (N0),
∣∣nε(x, t)

∣∣ � K0(n0)

bearing in mind the local Lipschitz continuity of operator F we have, for t > 0:
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∣∣yε(t)
∣∣ �

t∫
0

(∫
Ω

∣∣∣∣ f

(
x,

Nε(σ )

vol(Ω)
+ ρε(σ )(x)

)
− f

(
x,

N(σ )

vol(Ω)

)∣∣∣∣dx

)
dσ

� H0(n0)

[ t∫
0

∣∣yε(σ )
∣∣dσ +

t∫
0

(∫
Ω

∣∣ρε(σ )(x)
∣∣dx

)
dσ

]

for some constant H0(n0) > 0.
On the other hand, bearing in mind the estimation (18), we have

t∫
0

(∫
Ω

∣∣ρε(σ )(x)
∣∣dx

)
dσ � vol(Ω)

t∫
0

[
C1e−(α∗/ε)σ ‖ρ0‖∞ + C2(n0)ε

]
dσ

� C∗
1(n0)ε(1 + t) (20)

for some constant C∗
1(n0) > 0, depending on the initial value ‖ρ0‖∞ .

Therefore:

∣∣yε(t)
∣∣ � H0(n0)

t∫
0

∣∣yε(σ )
∣∣dσ + C∗

1(n0)ε(1 + t).

The Gronwall inequality provides, for t > 0:∣∣yε(t)
∣∣ � C∗

1(n0)ε(1 + t)eH0(n0)t .

Summarising, we have obtained the approximation result between the nonnegative solutions of the global perturbed
problem and the aggregated model, as is established in the following theorem:

Theorem 5. For each nonnegative initial data n0 ∈ C(Ω), the two-time scales reaction–diffusion model (10), (11), (12) has a unique
classical nonnegative global solution nε(x, t) which can be written as

∀x ∈ Ω, ∀t > 0, nε(x, t) = 1

vol(Ω)
N(t) + rε(x, t)

where N(t) is the solution to the aggregated model (14) corresponding to the initial data N(0) = ∫
Ω

n0(x)dx and

sup
x∈Ω

∣∣rε(x, t)
∣∣ � a∗

1εea∗
2t + a∗

3e−(α∗/ε)t, t > 0, ε > 0

where a∗
i , i = 1,2,3, are positive constants depending on the initial value n0 .

Notice that this approximation result means that nε(x, t) tends when ε → 0+ and t > 0 fixed, to a homogeneous spatial
distribution given by the solution to the aggregated model. Moreover, this convergence is uniform with respect to x in Ω

and with respect to t on each compact interval [t0, T ] with 0 < t0 < T < +∞.
The particular case where the reaction term does not depend on the space variable x corresponds with the situation

F (ker A) ⊂ ker A and recovers the formulation given in [7] and [11] for reaction–diffusion equations with large diffusivity.
Roughly speaking, these authors show that the solutions to a semilinear parabolic system including a big enough diffusion
term can be approximated by the solutions to an O.D.E. determined by the reaction term, which coincides with our aggre-
gated model. A more general situation can be found in [13], where the dynamics of a class of reaction–diffusion models
with large diffusivity is described by a so-called shadow system, whose underlying ideas are close to the construction of an
aggregated model.

4. Slow–fast population models with discrete spatial structure

The aim of this section is to illustrate the fact that the abstract setting described in Section 2 also includes simpler
situations in which the state space is finite-dimensional. In this case, the operator A is a matrix whose spectrum σ(A)

must satisfy some conditions that assure the essential point in our development, namely decomposition (3) of the state
space in invariant conservative and stable parts. Despite the fact that this situation can be studied directly using tools from
classical analysis, it is interesting from the point of view of modelling in population dynamics, as it is a suitable formulation
to represent discrete spatial structure (see [5] and references therein).

To be precise, let us consider q populations (q � 1) living in a region divided into discrete spatial patches. The evolution
processes are described by an ordinary differential system taking into account nonlinear local interactions on each patch
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that occur at a slow time scale and linear migration terms describing patch changes that are assumed to occur at a fast
time scale. The model we are considering reads as

X ′
ε(t) = 1

ε
A Xε(t) + f

(
Xε(t)

)
with

Xε(t) := (
x1ε(t), . . . ,xqε(t)

)T ; x jε(t) := (
x1

jε(t), . . . , x
N j

jε (t)
)T

and where xi
jε(t) is the number of individuals of population j living in the spatial patch i at time t , with j = 1, . . . ,q, and

N = N1 + · · · + Nq is the total number of spatial patches.
We also assume that f : RN −→ RN is a locally Lipschitz continuous function and that matrix A is a block-diagonal matrix

A := diag(A1, . . . , Aq) in which each diagonal block A j has dimensions N j × N j , and satisfies the following hypothesis:

Hypothesis 7. For each j = 1, . . . ,q, the following hold:

i) σ(A j) = {0} ∪ Λ j with Λ j ⊂ {z ∈ C; Re z < 0}.
ii) 0 is a simple eigenvalue of matrix A j .

As a consequence, ker A j is generated by an eigenvector of 0, which will be denoted by ν j . The left eigenspace of
matrix A j associated to the eigenvalue 0 is generated by a vector ν∗

j and we choose both vectors verifying the normalisation

condition (ν∗
j )

T ν j = 1.

Remark. Hypothesis 7 holds for a matrix A if each diagonal block A j is an irreducible matrix with nonnegative elements
outside the diagonal and in addition satisfies that ν∗

j := 1T
j := (1, . . . ,1)T ∈ RN j . In this case, A is a suitable matrix to

represent conservative migrations between patches.

In order to simplify the calculations, we introduce the following matrices

U := diag
((

ν∗
1

)T · · · (ν∗
q

)T ); V := diag(ν1 · · ·νq)

which satisfy U A = 0, AV = 0 and U V = Iq , Iq being the q × q identity matrix.
The above considerations assure the existence of the decomposition (3) of the space X := RN where ker A is a q-

dimensional subspace generated by the columns of the matrix V and S := {v ∈ RN ; U v = 0}.
The global variables are defined by

s(t) := (
s1(t), . . . , sq(t)

)T = U X(t); s j(t) := (
ν∗

j

)T
x j(t).

Notice that in the case ν∗
j = 1 j , this set of variables represents the total number of individuals of each population. Finally,

the aggregated model is given by

s′(t) = U f
(

V s(t)
)
. (21)

As we commented at the beginning of this section, the reduced model (21) can also be obtained by applying the
general theory for aggregation methods in O.D.E. described in [5], in the case where the fast dynamics is linear. In this
finite-dimensional setting it is straightforward to check the assumptions needed to apply Theorem 4 and therefore the ap-
proximation result between the asymptotic behaviour of solutions to both models holds. Also, a direct comparison result
when ε → 0+ between the solutions similar to Theorem 5 can be established without major difficulties. The main point in
this case is to assume supplementary smoothness conditions on function f so that global existence and boundedness of
solutions to the perturbed and aggregated models provide suitable bounds similar to (18) for the stable part of the solution.

Finally, let us illustrate the method with the following example, which is a discrete-space version of the predator-prey
model (FPP) in Section 3. The model consists of two populations of predators and preys living in a spatial region divided
into two patches, connected by fast migrations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n′
1(t) = 1

ε

(
k12n2(t) − k21n1(t)

) + r1n1(t)

(
1 − n1(t)

K1

)
− a1n1(t)p1(t),

n′
2(t) = 1

ε

(
k21n1(t) − k12n2(t)

) + r2n2(t)

(
1 − n2(t)

K2

)
− a2n2(t)p2(t),

p′
1(t) = 1

ε

(
m12 p2(t) − m21 p1(t)

) − μ1 p1(t) + b1n1(t)p1(t),

p′
2(t) = 1 (

m21 p1(t) − m12 p2(t)
) − μ2 p2(t) + b2n2(t)p2(t)
ε
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where ni(t), pi(t), represent the populations of preys and predators respectively at time t in patch i (i = 1,2), the positive
constants k12, k21 are the prey migration rates and the positive constants m12, m21 are the predator dispersal rates.

Simple calculations show that the global variables are the total populations of preys and predators:

N(t) := n1(t) + n2(t); P (t) := p1(t) + p2(t)

and the aggregated model (21) coincides with the classical predator-prey model (AM) in Section 3, in which:

r∗ := r1k12 + r2k21

k12 + k21
; K ∗ := r∗

(r1/K1)k̃2
1 + (r2/K2)k̃2

2

;

a∗ := a1k̃1m̃1 + a2k̃2m̃2; b∗ := b1k̃1m̃1 + b2k̃2m̃2; μ∗ := μ1m̃1 + μ2m̃2

where

k̃1 := k12

k12 + k21
; k̃2 := k21

k12 + k21
; m̃1 := m12

m12 + m21
; m̃2 := m21

m12 + m21
.

Then, the same conclusion as in (FPP) holds for the asymptotic behaviour of the solutions to both models in this example.

5. Conclusions

In this work we develop a method to apply the so-called aggregation of variables theory to the simplification of an
abstract semilinear evolution equation including two-time scales, defined on a Banach space. The aim of the work is to
provide a unified approach to the treatment of a class of spatially structured population dynamics models, whose evolution
processes occur at two different time scales, that are represented through a parameter ε > 0 small enough, giving rise to a
mathematical singular perturbation problem.

Assuming suitable smoothness conditions on the operators that appear in the abstract formulation, the C0-semigroup
theory helps to simplify the perturbed model giving rise to a simplified aggregated model whose dynamics is close to the
original one, when ε → 0+ . Then, general results comparing the asymptotic behaviour of solutions, provide an analysis of
complex singularly perturbed models in terms of simplified models.

We have illustrated the abstract approach with applications to some reaction–diffusion models including two-time scales,
recovering as particular cases some well-known results on reaction–diffusion models with large diffusivity. Also, applications
to population dynamics models including discrete spatial structure are given, with the aim of making evident that a wide
class of two-time spatially structured population dynamics models admit a unified approach provided by the C0-semigroup
theory, as explained in Section 2.

The theory developed in this paper is based on the important assumption that the fast dynamics is linear and represented
by an operator that is the infinitesimal generator of a C0-semigroup to which the general theory of reduction of operators
for isolated points of the spectrum can be applied. Generalisations of the method to nonlinear fast dynamics as well as
abstract settings including retarded functional differential equations are in progress and will be published elsewhere.
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