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a b s t r a c t

Enhancing the predictive power of models in biology is a challenging issue. Among the major

difficulties impeding model development and implementation are the sensitivity of outcomes to

variations in model parameters, the problem of choosing of particular expressions for the parametriza-

tion of functional relations, and difficulties in validating models using laboratory data and/or field

observations. In this paper, we revisit the phenomenon which is referred to as structural sensitivity of a

model. Structural sensitivity arises as a result of the interplay between sensitivity of model outcomes to

variations in parameters and sensitivity to the choice of model functions, and this can be somewhat of a

bottleneck in improving the models predictive power. We provide a rigorous definition of structural

sensitivity and we show how we can quantify the degree of sensitivity of a model based on the

Hausdorff distance concept. We propose a simple semi-analytical test of structural sensitivity in an ODE

modeling framework. Furthermore, we emphasize the importance of directly linking the variability of

field/experimental data and model predictions, and we demonstrate a way of assessing the robustness

of modeling predictions with respect to data sampling variability. As an insightful illustrative example,

we test our sensitivity analysis methods on a chemostat predator–prey model, where we use laboratory

data on the feeding of protozoa to parameterize the predator functional response.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Improving the predictive power of biological models is a
challenging issue. The current tendency in the literature is toward
the increasing of model complexity with the aim of incorporating
more and more ‘‘realistic’’ features, which often translates itself
into including more variables and model parameters. As an
example, in marine ecology models have evolved from simple
mean-field NPZ systems to complex spatial systems involving a
large number of variables (see Carlotti and Poggiale, 2010 for a
review of food web marine plankton models). However, such an
increase in model complexity does not always signify more
predictive power (Arhonditsis and Brett, 2004; Fulton et al.,
2004). A central question concerns the choice of the necessary
details to be included into the model in order to attain a
compromise between the realism of the process modeled and
the tractability of the mathematical construction (Demongeot
et al., 2009). Note that one of the major difficulties impeding
efficient model-based predictions is a large degree of uncertainty
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regarding the processes involved. Partially, this can be overcome
by using more sophisticated experimental devices and more
extensive collection of field data.

The use of experimental/observational data in the validation of
models can be tricky. For example, experimental data are often
obtained on a small (laboratory) spatial scale and under particu-
larly specific conditions, and as a result, in the case where a model
is validated based on laboratory experiments, implementation of
the modeling predictions in the natural environment on larger
temporal and spatial scales can be erroneous (Poggiale, 1998;
Begon et al., 2002; Englund and Leonardsson, 2008; Morozov and
Arashkevich, 2010; Morozov, 2010). Various reasons can be the
cause of these discrepancies: spatial heterogeneity, temporal
variability, behavioral complexities of species, environmental
noise and many others. This problem is even more critical when
concerning models designed for long term predictions, in which a
variable environment creates a new gap between the conditions
of well controlled experiments and the real world.

Another crucial factor when constructing a model is deciding
which parametrization (i.e. the choice of a particular function) to use
to describe a certain ecological process. Different approaches exist in
ecological literature to cope with the lack of information about the
particular functions which we need to implement in equations. For
example, one can consider a model without explicitly specifying
the functions, we only require that those functions satisfy certain
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properties (e.g. positive first derivative, vanishing at zero, etc.). An
advantage to this method is that we do not need to know the precise
shape of functions, which can vary slightly from system to system
(e.g. Kuang and Freedman, 1988; Truscott and Brindley, 1994;
Korobeinikov, 2009), but this approach has as a serious shortcoming
in that only a limited number of models can be treated this way—

in particular, a large variety of oscillatory dynamics (e.g. chaotic
patterns) cannot be studied without considering a concrete function.
For this reason, the conventional approach consists in choosing a
particular set of functions and performing the sensitivity analysis by
varying model parameters based on these chosen functions. A large
amount of literature exists on this topic. The conventional wisdom
here is that in the case where the sensitivity of model outcomes to a
variation in parameters is small, we can rely on our model. Unfortu-
nately, this ‘‘evident’’ claim can be wrong.

Indeed, recent theoretical studies have shown that different
functions with rather close shapes and the same qualitative proper-
ties (e.g. positive first derivatives and negative second derivatives,
etc.) used in the same model can lead to very different patterns of
dynamics (Myerscough et al., 1996). This phenomenon has been
referred to as super sensitivity to structure of models by Wood and
Thomas (1999). In particular, it was demonstrated that in a case
where large variations in parameters produce only small perturba-
tions in model outputs, slight modifications in the mathematical
formulations of the functions could lead to catastrophic changes in
the system dynamics (Wood and Thomas, 1999; Fussmann and
Blasius, 2005). The structural sensitivity can be considered as a
generalization of the mathematical concept of structural stability
(Kuznetsov, 2004), which states that a dynamical system is structu-
rally stable when a small smooth perturbation does not change its
qualitative properties (e.g. the number and stability of equilibria,
etc.). Structurally sensitive models can be described as ‘‘almost’’
structurally unstable and we give a more rigorous definition in the
next section. Taking into account the possible effects of structural
sensitivity on model outcomes become of vital importance, espe-
cially with increasing model complexity.

In this paper, we aim to explore in more detail the link between
structural sensitivity and structural stability by extending the initial
ideas of Wood and Thomas (1999). In particular, we investigate the
nature of structural sensitivity in the models, and we argue that it
emerges due to the interplay between sensitivity to the variation of
parameters and sensitivity to the choice of model functions. We
provide a more rigorous definition of structural sensitivity than the
original one given by Wood and Thomas (1999), and suggest that a
precise measurement of the degree of sensitivity is obtainable based
on the Hausdorff distance concept. Finally, we propose a simple
semi-analytical test of structural sensitivity where the modeling
framework is based on an implementation of ODEs.

Note that occurrence of structural sensitivity can cause another
bottleneck in model construction, which is related to the use of
experimental datasets in determining an empirically based mathe-
matical formulation of biological processes. The influence of data
variability on the parameter estimation of model functions has been
largely studied theoretically (Seber and Wild, 2003), as well in the
context of ecological applications (e.g. Williams et al., 2002), and on
the other hand parameter sensitivity, that is sensitivity of model
outputs to variation parameters values, constitutes almost a whole
domain of the biological sciences (e.g. Bendoricchio and Jorgensen,
2001). We should say that these two approaches are commonly
regarded separately. Yet, for a rigorous investigation into how
variations in parameters in experimental data/observations can
impact model predictions, one needs to have a precise knowledge
of the source of parameter variations, such as the variability due to
data sampling. In this paper, we propose an integrative method of
directly measuring sensitivity of model outputs to variations in
experimental data. We show that sensitivity to data sampling may
largely depend on the choice of mathematical formulations retained
in models, that is to say, it is closely related to the structural
sensitivity phenomenon. Taking structural sensitivity into account
allows us to compare ‘‘robustness to data variability’’ among models
based on different formulations.

Finally, as an insightful illustration, we will apply our sensitivity
analysis methods to a particular biological system – a predator–
prey model in a chemostat – where we show the importance of the
predator functional response formulation for the patterns of
dynamics. To parameterize the functional response, we use data
from laboratory experiments on the feeding of protozoa. We will
also estimate the robustness of our modeling results with respect to
data sampling variability, using our method for directly measuring
the sensitivity of the model outputs based on experiments. The
paper is organized as follows. In Section 2, we define structural
sensitivity and provide a simple test of structural sensitivity, in
Section 3, we apply the sensitivity methods to a predator–prey
model in a chemostat, and the paper ends with a general discussion
and conclusions.
2. Methods for structural sensitivity analysis

2.1. A criterion to detect structural sensitivity

The concept of structural sensitivity is closely related to that of
structural stability and the bifurcation theory of dynamical
systems. The structural stability definition (Kuznetsov, 2004)
states that a given system is structurally stable if infinitely small
smooth perturbations of model functions do not result in qualita-
tively different dynamics, i.e. the initial model and a slightly
modified model exhibit identical qualitative asymptotic behaviors
and have qualitatively same phase portraits. An example of
a structurally unstable system is the famous Lotka–Volterra
predator–prey model exhibiting neutral stability. On the other
hand, structural sensitivity is characterized by the occurrence of
different qualitative and quantitative asymptotic behaviors after
small but finite perturbations of the model. In other words, a
model is structurally sensitive when in its neighborhood in the
functional space of the model it is located close to structurally
unstable models. In that case, a perturbation of the system can
cross the bifurcation zone, leading to a qualitative modification of
the phase portrait. The strength of the perturbation plays an
important role in structural sensitivity and a strict definition
should include conditions on the limits of the maximal amplitude
of such perturbation. However, in this section we would like to
provide an illustrative idea of how structural sensitivity emerges
in ODEs models and how we can detect its presence based on a
simple semi-analytical criterion. In Section 2.3 we give a more
strict definition of structural sensitivity.

In order to provide a simple and practical criterion for structural
sensitivity, we shall focus here on the equilibrium points of the
model. Note that our criterion can be extended to the case of cyclical
oscillations as well. We shall consider that an equilibrium point of a
given model (M) is hyperbolic, i.e. the eigenvalues of the linearized
system at equilibrium have non-vanishing real parts. If the equili-
brium is not hyperbolic, then the model (M) is not structurally stable
and thus, automatically, it is structurally sensitive to perturbations.
Let us assume now that although the equilibrium is hyperbolic, at
least one eigenvalue l0 has real part close to zero. In practical
applications, it is possible that a ‘‘small’’ perturbation could drive the
real part of this eigenvalue to cross zero. Such a scenario would lead
to a bifurcation and would exhibit structural sensitivity of (M). The
amplitude of the perturbation may depend on the distance between
Reðl0Þ and 0 and on the way the eigenvalues of the Jacobian
matrices are affected by perturbations.
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Mathematically, the above situation can be rewritten in the
following way. We consider an ODEs-based model:

dX

dt
¼ FðXÞ ð1Þ

where XARn, and F is a function which is at least C2 with respect
to X. We assume that there is an equilibrium X 0 and that this
equilibrium is hyperbolic. A small perturbation of this model will
result in

dX

dt
¼ FðXÞþeGðXÞ ð2Þ

where G is a function which is at least C1 with respect to X and is
bounded in the vicinity of X 0. It can be shown (implicit function
theorem) that system (2) has an equilibrium X e close to X 0 if e is
small enough and

X e ¼ X 0þeX 1þoðeÞ

where X 1 ¼�DFðX 0Þ
�1
ðGðX0ÞÞ can be calculated from the initial

model, its equilibrium and the perturbation map G. We can
compute the Jacobian matrix DðFþeGÞðX eÞ of the perturbed
system at X e (see Appendix A) and based on the expression
obtained we can determine the directions, in the models space, in
which the initial model is sensitive. More precisely, we denote by
l0 the eigenvalue with the smallest real part (taken with absolute
value): jReðl0Þjr jReðlÞj for all l eigenvalue of DFðX 0Þ. If e is small
enough, there exists an eigenvalue le of DðFþeGÞðX eÞ such that

le ¼ l0þel1þoðeÞ ð3Þ

If e is small enough, then ReðleÞ has the same sign as Reðl0Þ. In
practical applications, the amplitude of perturbations depends on
the accuracy of the data that we use to validate the model. Such
critical perturbation has the meaning of the degree of uncertainty
when one parameterizes the model based on the data, thus the
value of e may be estimated based on data variability. The
amplitude of the perturbation in the above approach is the norm
of eG (the definition of this norm is given in Section 2.2), which in
turn depends on e, thus e may not be a small parameter and it is
possible that the equilibrium X e does not exist any more. This
means that a bifurcation leading to this disappearance has
occurred and thus that the model was indeed structurally
sensitive. However, if the equilibrium still exists, we can use the
following criterion to analyze its stability. If l1 and l0 have
opposite signs and e is supercritical, formula (3) shows that le
and l0 can have opposite signs, which would result in different
qualitative and quantitative dynamics for models (1) and (2).
Thus we can conclude that model (1) is structurally sensitive. In
the next section, we illustrate how the above theory works for a
practical example.

The above criterion can help reveal the existence of structural
sensitivity in a given model. Note that such sensitivity can arise
from different types of perturbations, mostly due to variation of
the parameter values in a given mathematical formulation (which
corresponds to the well-known parameter sensitivity), or due to
the modification of the mathematical formulation itself. Overall,
the structural sensitivity should be considered as a result of the
interplay between both mentioned types of perturbation and
either of them should not be regarded separately from each
other. In the next section, we give a method to quantify the
degree of structural sensitivity based on the Hausdorff dimension.

2.2. Measuring the degree of structural sensitivity

Let us consider a model, which we will call the reference
model, (MR). By perturbing (MR), we obtain a perturbed model
(MP). In order to determine the sensitivity of the reference model
we should quantify the impact of the perturbation. Such an
impact can be estimated based on comparisons of the models
outputs, in particular, by comparing the asymptotic dynamics of
the two models. Quantification of impacts of perturbations thus
needs two elements: a measure of the distance between (MR) and
(MP) and a measure of the distance between the outputs of (MR)
and (MP), respectively. Since asymptotic dynamics of a bounded
system can generally be represented by an attractor in the phase
space, we suggest considering a distance between the attractors
in the phase space, namely the Hausdorff distance.

We denote by dM the distance between models and dH the
Hausdorff distance between the attractors. First we would like to
explain the choice of dH and state its definition. The point is that
the asymptotic dynamics are characterized in the phase space by
the o-limit sets of the model. Such sets are compact and thus a
natural distance that can be used to measure the evolution of the
system in the phase space is the Hausdorff distance. Let us note
that working with the o-limits instead of considering time series
as output reference provides some advantages. For instance,
considering an attractor of a system allows us to take easily into
account all the state variables at the same time. Moreover, it
avoids the influence of initial conditions. Finally, comparing two
time series is not always simple since it depends on the time
series structure. On the other hand, when comparing attractors in
the phase space, we consider two compact sets and the Hausdorff
distance becomes a better adapted tool. Let K1 and K2 be two
compact sets in Rn with its Euclidian metric d. Their Hausdorff
distance dHðK1,K2Þ, defined on the set K of all the compact sets on
Rn, is given by

dHðK1,K2Þ ¼max max
yAK2

fdðK1,yÞg,max
xAK1

fdðK2,xÞg

� �
ð4Þ

with dðA,yÞ ¼minxAAfdðx,yÞg for any compact set A.
Let us now consider the distance between the models, dM.

There are many ways to define such a distance. For instance, let us
assume that in the reference model (MR) we focus on a particular
process which is represented by a reference function gR, defined
on a subset D of the state space. We consider the mathematical
expression and the parameter values of gR to be fixed. We are
interested in a perturbation of gR, leading to a function gP, also
defined on D. The distance between the models can thus be
defined by

dMðMR,MPÞ ¼

Z
D
jgRðXÞ�gPðXÞj dX ð5Þ

Let us denote by KR the attractor associated to the reference
model for a fixed initial condition and let us denote by KP the
attractor associated to the perturbed model with the same initial
condition. The relation between dHðKR,KPÞ and dMðMR,MPÞ pro-
vides a tool to measure the impact of the perturbation.

Based on the above measuring of distances between the
models and the model outcomes we are now able to provide a
more rigorous definition of structural sensitivity.

2.3. Definition of structural sensitivity

Let us consider two fixed positive numbers s and r and a
reference model (MR). We denote by BrðMRÞ the set of models (M)
such that dMðMR,MÞor. For a given initial condition XARn, we
denote by KR(X) its o-limit with the model (MR) and by K(X) its
o-limit with the model (M).

We say that (MR) is r-structurally s-sensitive if there exists
MABrðMRÞ such that one of the following conditions is fulfilled:
(i)
 (M) is not structurally stable;

(ii)
 there exists an initial condition X0ARn such that for all X

satisfying KRðXÞ ¼ KRðX0Þ, then dHðKRðXÞ,KðXÞÞZs.
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In other terms, the structural sensitivity occurs when either
there is a not structurally stable system in the r-vicinity of (MR) in

the space of models, or if an attractor of the system (MR) is
sufficiently deformed (difference 4s) by a small (size or in the
space of models) perturbation (represented by (M)).

For practical purposes, r is chosen based on the given accuracy
of experimental/field data; s is the required degree of accuracy of
model prediction.

2.4. Data variability and sensitivity analysis

We previously considered a reference model with fixed
parameter values and presented some methods to measure its
sensitivity to perturbations. As we explained, such perturbations
can be due to parameter deviations or to mathematical formula-
tion changes. For a fixed mathematical formulation of the refer-
ence model, the parameter values may depend on the datasets
used to calibrate it. In this section, we focus on the problems
linked to the data variability itself. We propose a method to
directly connect the sensitivity of model outputs with the
variability of data that have been used to estimate the parameters
of the model.

Consider a model (M) which includes a particular process. This
process is modeled through a known functional relationship
gðX,yÞ, where X is a vector of state variables and y is a vector of
unknown parameters that control the shape of the curve g. Since
these parameters often have ecological interpretations, the aim is
to estimate y as precisely as possible. This is usually achieved
using a set of experimental data fðX1,y1Þ, . . . ,ðXn,ynÞg where the
y1, . . . ,yn are observations of the process g which is usually
sampled at n discrete values X1, . . . ,Xn. The observations of the
process g arrive as noisy data such that

yk ¼ gðXk,yÞþek, k¼ 1, . . . ,n

where ek are considered as random residuals with zero mean and
finite variance. The level of noise may strongly depend on the
way data are acquired, including frequency sampling, location,
measure accuracy, and so on. Starting with these observations,
the least-squares estimate by of parameter y is that one that
minimizes the following error sum of squares:

SðyÞ ¼
Xn

k ¼ 1

ðyk�gðXk,yÞÞ2

In many practical cases, the function gðX,yÞ depends non-
linearly on the parameters thus making the regression problem
non-linear, so it does not admit analytic solutions and numerical
methods are required. Once a realization of by is found using the
data at hands, one can display the process g and check if the
fitting is good. At this step, it can be advisable to quantify the
reliability of that fitting. For that matter, the theory of non-linear
regression states that, under some appropriate properties of the
distribution of random errors, the distribution of the estimate by
can be found. This distribution allows to construct approximate
confidence intervals and to test the quality of the fit to the data.
An example of density estimation will be provided further in the
application section.

Consider now the outputs of the model (M). This model
is connected to the realizations of by through the function g.
Changing data will change the realization of by, and will obviously
change these outputs. For many practical cases, it becomes of
importance to assess how much the model outputs will be
modified by data variability. Using an estimated probability
distribution of by constructed with the dataset, it is possible to
draw m values fby1, . . . ,bymg which are estimations of y and to
compute the m corresponding output fX1ðtÞ, . . . ,XmðtÞg of the
model (M). This gives rise to a corresponding family of attractors
ðAkÞk ¼ 1,...,m. The effect of data variability is then estimated by
implementing a method of calculus of the variance V of this
attractor family, such that

V ¼
1

2m2

X
i

X
j

d2
HðAi,AjÞ

with dH, the Hausdorff distance between attractors Ai and Aj. In
the space of the attractors, the concept of the mean value can be
rather ambiguous which prevents the use of a standard variance
formula. It is now possible to connect the data variability with the
dynamics of the model.
3. The case study: a predator–prey model in chemostat

3.1. Structural sensitivity in a chemostat-type predator–prey model

In this section, we provide an illustrative example of imple-
mentation of the above theoretical tools to determine structural
sensitivity of a predator–prey model in a chemostat. The chemo-
stat modeling framework is largely implemented in theoretical
ecology (e.g. in modeling of planktonic ecosystems, microbial
ecology, bioengineering, etc.). Moreover, the chemostat is an
apparatus broadly used by experimentalists and that produces
numerous datasets on which models can be calibrated. It also
produces continuous time series that can be compared to ODE
models outputs (Fussmann et al., 2000; Becks et al., 2005). Note
also that even if the chemostat models are validated in laboratory
experiments and not in a field context, some other ecosystem
models show similar mathematical structure (Smith and
Waltman, 1995; Thébault and Loreau, 2005). In our study, we
focus on the predation process, in particular, the consequences of
small variation in the predation function. Note that the problem
of formulation of predation function has been widely discussed in
theoretical ecology (Arditi et al., 1991; Abrams, 1994; Jeschke
et al., 2002).

The model is composed of three ODEs that describe, respec-
tively, the evolution in time of the substrate concentration x(t),
the prey population density y(t) and the predator population
density z(t). We assume that each population feeds only on one
type of resource (the prey for the predator and the substrate for
the prey). The nutrient uptake rate f(x) and the functional
response g(y) (the number of prey eaten per unit time by a single
predator) are represented by generic functions. The model equa-
tions are given by

dx

dt
¼ Dðxin�xÞ�f ðxÞy

dy

dt
¼ e1f ðxÞy�gðyÞz�Dy

dz

dt
¼ e2gðyÞz�Dz

8>>>>>>><
>>>>>>>:

ð6Þ

with D the dilution rate in the chemostat, xin is the input substrate
concentration within the chemostat reservoir, e1 is the yield
coefficient of prey during consumption of substrate and e2 is the
yield coefficient of predator during consumption of prey. We
assume that the generic resource consumption functions f(x) and
g(y) belong to C1ðRþ Þ. Moreover, when there is no resource in the
medium there is no consumption, which means that f(0)¼0 and
g(0)¼0. We also consider that the more abundant the resource is,
the more the consumption of this resource is high. This means
that the functions f and g are monotonically increasing: f 0ðxÞ40
and g0ðyÞ40.

Thereafter, the specific nutrient consumption by prey f(x) will
be modeled with Michaelis–Menten kinetics: f ðxÞ ¼ vmaxx=ðkþxÞ,
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with vmax is the maximum assimilation rate and k is the half-
saturation constant.

A large number of works have been devoted to the analysis of
predator–prey models in a chemostat (among many others we
can cite Pavlou, 1985; Butler and Wolkowicz, 1986; Smith and
Waltman, 1995), and the general dynamics of this type of system
is well-known. By applying Theorem 1.5 from Thieme (1994), the
chemostat system (6) can be reduced to a two-dimensional
model, and it is noteworthy that two-dimensional models are
generally structurally stable. Moreover, it can be easily shown
that the stability of the positive equilibrium can be given by the
sign of the derivative of the prey isocline at equilibrium. This
geometrical criterion, that has already been used for generalized
Rosenzweig–McArthur model (Freedman, 1976; Brauer and
Castillo-Chavez, 2000), can be extended to predator–prey models
in a chemostat. Later on, this criterion will allow us to illustrate
the mechanism under which a very similar functional response
shape can lead to differing qualitative and quantitative behavior
of the model.

Here, we are interested on the impact in a functional response
expression modification on the chemostat model dynamics. For
that, three alternative functional response formulations are con-
sidered. They are summarized in Table 1. All these functions have
a similar shape. They are concave, monotically increasing and
saturate as the prey density becomes high enough. For all of them
aX ¼ g0Xð0Þ and aX=bX ¼ limy-þ1gXðyÞ, with XAfh; i; tg.

Note that the use of these three functional responses (Holling
type II, Ivlev and trigonometric) in a predator–prey model,
and the subsequent analysis by Figs. 1–3 very closely follows
(Fussmann and Blasius, 2005).
Table 1
The different functional responses.

Functional response Formulation

Holling (Holling 1959b) ghðyÞ ¼
ahy

1þbhy
Ivlev (Ivlev, 1961) giðyÞ ¼

ai

bi
ð1�expð�biyÞÞ

Trigonometric gtðyÞ ¼
at

bt
tanhðbtyÞ

data
Holling II
Ivlev
Trigonometric
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Fig. 1. Data of functional response of protozoa (Canale et al., 1973), and curves of

the three functional responses estimated by the simplex method of Nelder–Mead.

The functions have very similar shape, even though their mathematical formula-

tions are different.
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Fig. 1 provides an illustration of the three functional responses
fitted to a dataset (Canale et al., 1973). One can see from the
figure that the fitted functional responses are rather close to each
other, even with a set of parameters estimated from real data (see
Appendix B for parameter values).

To get an idea of the dynamics produced by each function g(y),
a set of simulations was run for different input concentrations xin.
It has been observed that an increase of xin leads to a destabiliza-
tion of the positive equilibrium through a Hopf bifurcation, but
the bifurcation does not occur for the same value of xin according
to different functional responses. Fig. 2 is the phase portrait of the
system showing the dynamics for each functional response when
the dilution rate is equal to 0.05 h�1, and the input substrate



C. Flora et al. / Journal of Theoretical Biology 283 (2011) 82–91 87
concentration is equal to 130 mgC/l. For the chosen parameter
values, the trajectories simulated based on the Holling and the
Ivlev functions settle into a stable limit cycle. By contrast, the
dynamics obtained with the trigonometric function reaches an
equilibrium quickly. As we early mentioned, this is related to the
sign of the prey isocline slope when this curve intersects the
predator isocline and gives birth to an equilibrium. In particular,
the prey isocline has a positive slope in the case of the Holling and
Ivlev functions, but a negative slope for the trigonometric func-
tion (see Fig. 3). It is important to note that differences between
the three dynamics are qualitative but also quantitative. Indeed
even for two cyclic attractors, the amplitudes of the cycles are not
the same, with larger oscillations for the Holling than for the Ivlev
functional response.

The displayed results underline a sensitivity of the system to
the functional response formulation that is important enough to
produce quantitative and qualitative dissimilarities in the asymp-
totic dynamics. The model response to the enrichment, linked
directly to an increase of xin, is sensitive to the shape of the
predator–prey relations. Thus one would expect that the system
is structurally sensitive. In the next subsection, we implement the
theoretical methods developed in Section 2 to provide quantita-
tive estimates of structural sensitivity and the effects of data
variability.
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the system is linked to variations of the a value. Change in the functional response

formulation from an Ivlev formulation (a¼ 0) to a Holling (a¼ 1) leads to a

destabilization of the model through a Hopf bifurcation (H) for a¼ 0:442. The

dynamics of the system are numerically studied by using the Matlab bifurcation

and continuation toolbox MATCONT (Dhooge et al., 2003).
3.2. Structural sensitivity analysis applied to the chemostat model

We first implement structural sensitivity criterion developed
in Section 2.1. In our case we know a priori three different
parameterizations of the functional response, and structural
sensitivity can be highlighted by considering each formulation
as a perturbation of another one. However, generally speaking, we
ignore alternative parameterizations and structural sensitivity
can be assessed by perturbing the initial function in several
directions of models space (in the simplest case, we can consider
a linear perturbation). Since the initial three-component model
can be reduced to a two-component model, the stability of the
perturbed equilibrium can be investigated using the determinant
and the trace of the Jacobian. Note that in the given system the
determinant is positive as far as the interior equilibrium exists.
As such, the sign of the trace allows us to make conclusions on
the stability of the equilibrium after perturbation (see the details
of the calculus in Appendix B). Our computation allows us to
estimate a magnitude of small perturbation of the functional
response resulting in structural sensitivity. For example, for
xin¼90, a small linear perturbation of the Holling functional
response leads to a destabilization of the positive equilibrium,
which can be observed by a change in the sign of the Jacobian
eigenvalues, thus the system is structurally unstable.

To get a further insight into the model’s structural sensitivity
we consider a family of close functional responses. The main
objective now is to compare the system sensitivity to a perturba-
tion of the functional response formulation with the sensitivity to
a perturbation of the functional response parameters. The impact
of both types of perturbation on the system dynamics is quanti-
fied based on the method developed in Section 2.2. The distance
between the reference model (M1) and the perturbed model (M2)
is dM; we consider the space F of all functions satisfying the
model assumptions:

F ¼ ff AC1
ðRþ Þ=f ð0Þ ¼ 0g

We obtain that

dMðM1,M2Þ ¼

Z yM

0
jg1ðyÞ�g2ðyÞj dy ð7Þ
where g1 and g2 are two functions belonging to F and yM ¼ e1xin is
the maximum value that may be reached by the prey density y.

For the sake of simplicity, the modification of the functional
response formulation is performed on a particular subset of F ,
namely the linear path between the Holling and the Ivlev
functions, where both functions could be used as a reference
functional response. We then define the family of functions Ga:

Ga ¼ aĝ hþð1�aÞĝ i, aA ½0,1�

where ĝ h (resp. ĝ i) is the Holling (resp. Ivlev) functional response
gh (resp. gi) in which the parameters values are fixed and given in
Appendix B. When the a value is continuously moved from 0 to
1 in Ga, the proportion of Holling is modified, respectively, from
0% to 100% in the resulting functional response.

The Hausdorff distance is computed for the formulation
perturbation measured with a as well as for the parameter one.
When the Holling functional response is used as the reference, a
is moved from 1 (Holling) to 0 (Ivlev). Reciprocally, when the
Ivlev functional response is the reference, a is moved from 0
(Ivlev) to 1 (Holling).

Since the distance dMðG0,GaÞ is monotone with a, the maximal
perturbation of the functional response is given by the distance
dMðG0,G1Þ that represents the distance measured between pure
Holling and Ivlev functional responses (the reference functions).
The values of operating parameters D and xin are chosen such that
the Holling functional response G1 produces a cyclical dynamics
and the Ivlev functional response G0 drives dynamics at equili-
brium. Thus while a is moving from 0 to 1 the asymptotic
dynamics are changing from equilibrium to limit cycle behavior.
More precisely, for a¼ 0:44, the proportion of Holling function in
Ga is large enough to destabilize the system through a Hopf
bifurcation. This is illustrated by Fig. 4 that represents the
evolution of the o-limit of the system related to variations of a.
On the other hand, the variation of the parameter aX (resp. bX) has
been performed in both directions by decreasing and increasing
aX (resp. bX), taking the parameter value given in Appendix B as
the starting point. For the sake of brevity we only present here the
variation computed along the higher sensitivity direction.

The degree of sensitivity is shown by plotting the distance dH

against the distance dM (Fig. 5a and b). One can see that in both
cases the sensitivity with respect to a is more important than
sensitivities to aX and bX. Furthermore, the impact of the functional
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(dM) produced by variations of a (in blue), ah (in red) and bh (in green) values, with

the Holling type of response as the reference function (a) and with the Ivlev

response as the reference function (b). The system is always more sensitive to

changes in the functional response formulation (variation of a) than in the

functional response parameter values ah and bh. After that a reaches the Hopf

bifurcation value 0.442, the system sensitivity to formulation explodes and

becomes much higher than the sensitivity to the parameters ai and bi. (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

Fig. 6. Bivariate density function of functional response parameters ðaX ,bX Þ, with

X¼ i or h (circular isoclines), and bifurcation diagrams of the model linked to

variations of the Holling functional response parameters (a) and of the Ivlev

functional response parameters (b). This is performed for D¼0.05 and xin¼90

(blue curve), or xin¼130 (red curve). Whatever the functional response, the

variability of the dataset can influence the estimation of the functional response

parameters and lead to qualitatively different model dynamics. (For interpretation

of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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response parameter on the system behavior is increasing almost
linearly with respect to the dM, while the sensitivity to the functional
response formulation exhibits two phases, each of them being
quasi-linear, separated by a sharp increase. The break of the slope
occurs when a reaches the Hopf bifurcation value 0.442, at which
point a change in the asymptotic behavior of the perturbed system
takes place and the a-sensitivity curve is split into two different
parts. For ao0:442, the asymptotic behavior of the perturbed
system is an equilibrium. In this case, a perturbation of the system
drives a slight modification of the equilibrium value which does not
have a strong impact on the Hausdorff distance, whatever the
reference function is. On the other hand, for a40:442 the o-limit
set of the perturbed system is a limit cycle for which the amplitude
increases drastically, producing large variations in the Hausdorff
distance.

Finally, it is interesting to estimate the influence of variability
in the data used to reveal the functional response from experi-
ments (Fig. 1) upon the patterns of dynamics predicted by the
chemostat system. The estimation of the joint probability
distribution of the parameters aX and bX, for a given functional
response (e.g. Holling or Ivlev functional responses), is obtained
by the bootstrap technique. For each functional response, a set of
m estimated parameters fðak,bkÞ,k¼ 1, . . . ,mg is computed by
perturbation of the initial dataset. The bivariate distribution of
ðaX ,bXÞ is estimated by kernel density estimation (Simonoff,
1996). It is then interesting to connect this density function to
the bifurcation diagram of the model, in order to observe
straightforwardly the changes in the asymptotic dynamics of
the model, induced by parameter changes. Fig. 6a displays both
the density distribution of parameters ah and bh for the Holling
functional response, and two bifurcation lines for different
values of xin. Let us consider, for instance, the blue curve for
xin ¼ 90 mg=l. For the parameters located on the left side of this
curve the system is at equilibrium, whereas the right side part
corresponds to oscillations. Note that the curve splits the bivari-
ate density of ðah,bhÞ in two parts with roughly the same size. This
signifies that for some small perturbations of the dataset used to
estimate the values of ðah,bhÞ, the probability of falling into a
particular side is identical. Thus, by using the same experimental
dataset, with one formulation, it is possible to get some qualita-
tively different dynamics. The same observations can be made for
the Ivlev formulation with xin ¼ 130 mg=l (Fig. 6b).
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The measure of the effect of data variability on the model
output robustness is tackled through the calculus of the variance
V introduced in Section 2.4. Fig. 7 displays the computation of V

over a set of a values ranging from 0 to 1 (x-axis) and over a set of
xin values ranging from 50 to 150 (y-axis). This variance increases
with the value of xin, whatever a values. The sensitivity of the
system to data variability becomes stronger in the case where the
enrichment of the medium is high. For high xin, a weaker
variability of the model output is computed for ‘‘intermediate’’
functional responses (a� 0:5). Thus, the system is more robust to
data variability when the functional response used is a linear
combination of the Holling and the Ivlev function.
4. Discussion and conclusion

Most current biological models are structurally stable, i.e.
infinitely small perturbations will not largely change their
dynamics. We argue that to provide robust predictions, one needs
the requirement that a given model should not be structurally
sensitive. Structural sensitivity encompasses several types of
sensitivity that have been already studied separately, such as
parameter sensitivity or sensitivity to model formulation (Wood
and Thomas, 1999; Fussmann and Blasius, 2005). To summarize,
we have revisited the phenomenon of structural sensitivity and
provided a more rigorous definition. Based on the refined defini-
tion, we developed a practical criterion for the detection of such
structural sensitivity in a given model. By extending the method
initially elaborated by Wood and Thomas (1999) we proposed a
framework to test which type of disturbance (function formula-
tion or parameters) has the greatest impact on the model output,
by providing a more general measure of model sensitivity. Finally,
we suggested a method that allows us to quantify the impact of
data variability on robustness of the model outputs. This
approach seems to be quite innovative since it integrates several
different steps of the modeling process that could be affected by
data variability, and it also enables us to choose which selection
of functions is the most robust.

The implementation and illustration of the theory has been
performed on a chemostat predator–prey model. Structural sen-
sitivity of this model has been investigated through perturbations
of the functional response of the predator, and we found that a
relatively small perturbation in the functional response formula-
tion could lead to very different system outputs. We also saw that
the chemostat model can be more sensitive to the formulation of
the functional response than it is to parameter variations. This can
be of a great practical importance since the choice of ‘‘correct’’
functional response for a predator is a matter for debate in the
literature regarding how to parameterize predation on different
organization levels, and different spatial and temporal scales.
Estimation of the functional response of predators is generally
empirical, for instance it can be obtained based on fitting of
experimental datasets (cf. Fig. 1). The problem of structural
sensitivity should be taken into account when estimating the
impact of data variability on model predictions. In particular, we
have shown based on experimental data for the feeding of
protozoa that the dynamics of the chemostat model can be
strongly influenced by the data sampling. This impact being even
more important in the case of a highly enriched medium.

As we pointed out in the definition, there can be two scenarios
of structural sensitivity. When describing a simple criterion in
Section 2.1 we considered the case in which a supercritical
perturbation results in alteration of the phase portrait of the
system (stability loss). The same concerns the case study, where
the parameters taken based on data fitting are close to a bifurca-
tion value. This scenario has been reported by Fussmann and
Blasius (2005). However, another scenario of structural sensitivity
may take place without bifurcation, and it arises because the
slight perturbations become largely amplified. This is probably
the mechanism underlying the quantitative differences observed
in the example proposed in Wood and Thomas (1999). Thus, our
criterion of detecting sensitivity given in Section 2.1 does not
consider the second case. However, the method to measure the
structure sensitivity proposed in our paper will ’’work’’ for both
scenarios, i.e. it does not require the occurrence of a bifurcation.

In this paper, we have measured model outputs directly in the
phase space, by considering system attractors. This approach has
several advantages, since the method takes all the variables into
account regardless of the time course. Since in modeling in
biology we often deal with dissipative systems, the attractors
are well defined, and so the Hausdorff distance allows us
to measure the quantitative differences between qualitatively
different objects. As a result, such comparison does not depend
on the initial conditions. Note that it is not always simple to
directly compare two time series having different characteristics.
For example, when one compares two periodic oscillations with,
we need to take into account the difference in amplitudes, the
periods and the initial conditions. The attractors in the phase
space are always compact sets it makes our approach more
efficient in such situations. Nevertheless, the considered approach
has some limitations as well. In particular, it can only account for
asymptotic behavior and thus neglects any transient behavior. We
also loose the reference to the time course (i.e. the time scale of
the processes), which in some cases may be crucial.

Note that the suggested simple criterion for detecting struc-
tural sensitivity of perturbation in equilibriums can be extended
to other types of attractors. For instance, in the case of a limit
cycle, we should focus on the eigenvalues of the Poincare map
linearization by considering the Floquet multipliers. Furthermore,
if a model has several attractor in the phase space, it may be
interesting to take this attractors diversity into account in the
model output measure. In the case developed in this paper, we
fixed the initial conditions, meaning that the attractor considered
here is the only possible one within the basin of attraction
containing the initial conditions. In the situation where there is
an uncertainty regarding knowledge of the initial condition, it
could be useful to compare models with different numbers of
attractors.



Table B1
Parameter values and units. mgC means milligram of carbon, mgB means

milligram of bacteria and biov means biovolume of bacterivore.

Parameter Value and unit

D¼ dilution rate 0.05 h�1

xin¼ input substrate concentration 50–200 mgC/l

e1¼ yield coefficient 0.3 mgB mgC�1

e2¼ yield coefficient 1.2 biov l mgB�1 ml�1

vmax¼ maximal growth rate 1.6 mgC mgB�1 h�1

k¼ half-saturation constant 16 mgC/l

ah 1.5�10�2 l biov�1 h�1

bh 1.9�10�1 l mgB�1

ai 1.1�10�2 l biov�1 h�1

bi 1.5�10�1 l mgB�1

at 8.2�10�3 l biov�1 h�1

bt 1.1�10�1 l mgB�1
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We previously addressed the problem of formulation sensitivity,
which raises the problem of formulation choice in models. According
to the actual aim of the model, different approaches are used. To
enhance the predictive power of models, it is not necessary to gain a
full understanding of the system behavior and the structure of
parameter space. In order to do this, one needs a robust algorithm
able to provide a forecast based on the known set of field data/
experiments. An empirical approach can thus be used to choose the
parametrization of model functions. The resulting predictive model
needs to be robust to slight perturbations and thus we search for
models with the lowest sensitivity. The critical perturbation magni-
tude is determined by the degree of uncertainty about the given
process, in particular, it can be determined by the degree of
scattering of the available field data. The tools proposed to analyze
the structural sensitivity in our paper can be used to check such
sensitivity in the existing models. An alternative to the empirical
approach for obtaining model functions is the mechanistic one,
which is implemented when our objective is to understand biological
patterns and process. A mechanistic model can also be sensitive to
slight perturbations. In particular, incorporating some mechanisms
in a model often leads to more complex systems with additional
nonlinearities. Testing a mechanistic model for structural sensitivity
will help to reveal the role of different assumptions made when
constructing a model based on the outputs, which is important in a
cognitive perspective (Poggiale et al., 2010).

Finally, an important question concerns what needs to be done if a
model exhibits structural sensitivity for a given set of parameters
(and functions). It is evident that the predictions obtained in such a
situation cannot be reliable. One could suggest choosing another set
of parameters which fits the data less, but is characterized by a
smaller degree of structural sensitivity. Another possibility is to
suggest including other processes into the model which will result
in a decrease of degree of sensitivity (e.g. by considering structured
instead of uniform populations, etc.). Alternatively, one can decrease
an unjustified model complexity in the case of a large uncertainty
about certain processes. We believe, however, that a crucial issue is
the understanding of how a natural system will behave in the case
where the model describing this system is structurally sensitive. In
other words, it would be interesting to see if the structural sensitivity
is only an artifact of mathematical modeling (and arises only due to
our lack of information on the underlying processes) or if it is an
important intrinsic property of biological systems, which could partly
explain the unpredictable behavior of many natural systems which is
constantly amplified by environmental noise. Addressing this ques-
tion should definitely be a topic for future investigation.
Appendix A. Jacobian matrix of the perturbed system at the
equilibrium

The jacobian matrix of the perturbed system at the equili-
brium X e is given by

DðFþeGÞðX eÞ ¼DFðX 0ÞþeD2FðX 0ÞX 1þeDGðX 0ÞþoðeÞ

Since X 1 ¼�DFðX 0Þ
�1
ðGðX0ÞÞ, we have

DðFþeGÞðX eÞ ¼DFðX 0Þþe½�D2FðX 0Þ:DFðX 0Þ
�1
ðGðX0ÞÞþDGðX 0Þ�þoðeÞ

Appendix B. Calculus of Section 3

B.1. Model parameter values

The different parameter values of the system (6) come from
estimations made with a real dataset provided in Canale et al.
(1973). The estimations of the values of aX and bX (XAfh; i; tg) are
obtained by fitting each function mentioned above to the dataset.
Parameter estimation is performed by minimizing the sum of the
squared distances between each observed data point and the
corresponding model value. The minimization has been done by
using the simplex Nelder–Mead method (Nelder and Mead, 1965;
Lagarias et al., 1998). Thereafter, all the parameters used in the
study have been rescaled in order to express the substrate
concentration in mg/l, the prey density in mg/l (assuming that
one optical density unit is equivalent to 360 mg/l of bacteria
(Canale et al., 1973)), and the predator density in biovolume/ml.
Their values and units are summarized in Table B1.

B.2. Details of structural sensitivity detection in the chemostat

model

The predator–prey system at the positive equilibrium reads

FðX0 Þ ¼

e1vmax xin�
y

e1
�

z

e1e2

� �

kþxin�
y

e1
�

z

e1e2

y�
ay

1þby
z�Dy

e2
ay

1þby
z�Dz

0
BBBBBBB@

1
CCCCCCCA

with the following the Jacobian matrix:

DF11ðX 0Þ ¼ �
vmaxk

kþxin�
y

e1
�

z

e1e2

� �2
y

þ

e1vmax xin�
y

e1
�

z

e1e2

� �

kþxin�
y

e1
�

z

e1e2

�
a

ð1þbyÞ2
z�D

DF12ðX 0Þ ¼ �
vmaxk

e2 kþxin�
y

e1
�

z

e1e2

� �2
y�

ay

1þby

DF21ðX0 Þ ¼ e2
a

ð1þbyÞ2
z

DF22ðX0 Þ ¼ e2
a

1þby
y�D

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

To detect structural sensitivity in the chemostat model,
the functional response of the above system is perturbed, and
the stability of the perturbed system equilibrium is assessed. The
perturbed model at the equilibrium point X 0 reads

ðFþeGÞðX 0Þ ¼

e1vmax xin�
y

e1
�

z

e1e2

� �

kþxin�
y

e1
�

z

e1e2

y�
ay

1þby
þegðyÞ

� �
z�Dy

e2
ay

1þby
þegðyÞ

� �
z�Dz

0
BBBBBBB@

1
CCCCCCCA
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Since we are working with two-dimensional systems, the stabi-
lity of the equilibrium can be found with the determinant and the
trace of the Jacobian at the equilibrium point. In the given system
the determinant is positive as far as the interior equilibrium exists.
Thus, the sign of the trace gives us straightforwardly the sign of both
eigenvalues. The trace of the perturbed system is given by

Te ¼ TrðDðFþeGÞðXe ÞÞ

An asymptotic expansion of Te with respect to e gives

Te ¼ T0þeT1þoðeÞ

with T0 ¼ TrðDFðX 0ÞÞ, and

T1 ¼ y
�e2zD2F11yDF12þzD2F11zDF21þe2zDF11�e2zD2F22yDF12þe2DF21DF12

DF12DF21

� �
�z

where

D2F11yðX 0Þ ¼
@DF11

@y
¼�

2vmaxk

e1 kþxin�
y

e1
�

z

e1e2

� �3
y

�
vmaxk

kþxin�
y

e1
�

z

e1e2

� �2
þ

2ab

ð1þbyÞ3
z

D2F11zðX 0Þ ¼
@DF11

@z
¼�

2vmaxk

e1e2 kþxin�
y

e1
�

z

e1e2
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y

�
vmaxk

e2 kþxin�
y

e1
�

z

e1e2
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�

a

ð1þbyÞ2

D2F22yðX 0Þ ¼
@DF22

@y
¼ e2

a
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z

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
In our example we take gðyÞ ¼ ky, with k some constant. For xin¼90,
the positive equilibrium of the predator–prey model is stable which
means that T0 is negative. The condition for the system to exhibit
structural sensitivity is to have Te of different sign than T0. For a
linear perturbation a the Holling functional response eT1 is positive
and greater than T0, leading to an unstable equilibrium. This change
in the stability of the equilibrium after some perturbation proves
that the system in a chemostat is structurally sensitive.
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