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Abstract—The aim of this paper is to apply aggregation methods to food chains under batch and
chemostat conditions. These predator-prey systems are modelled using ODEs, one for each trophic
level. Because the models are based on mass conservation laws, they are conservative and this allows
perfect aggregation. Furthermore, it is assumed that the ingestion rate of the predator is smaller than
that of the prey. On this assumption, approximate aggregation can be performed, yielding further
reduction of the dimension of the system. We will study a food chain often found in wastewater
treatment plants. This food chain consists of sewage, bacteria, and worms. In order to show the
feasibility of the aggregation methods, we will compare simulated results for the reduced and the full
model of this food chain under chemostat conditions.
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1. INTRODUCTION

Food chains models under batch and chemostat conditions have been studied extensively, we refer
to {1,2]. These models generally include a substrate, a prey and a predator, and sometimes even
a top-predator. Consequently, the description of the dynamics involves three or more ODEs and
many parameters.

In some realistic cases, there are differences in the order of magnitudes of the ingestion and
growth rates. An example is a food chain of sewage-bacterium-worms (for example, the water
nymph Nais elinguis, a oligochaete species) often found in wastewater treatment plants [3-5],
there are differences in the order of magnitudes of the ingestion and growth rates. In this paper,
we shall take advantage of these different time scales to apply aggregation methods in order to
simplify the models for the dynamics of the system.

Perfect aggregation allows to reduce exactly the dimension of a dynamic system. New global
variables are defined, which allows one to describe the dynamics of the system in a condensed
way [6,7]. In previous papers, we used perturbation techniques to perform approximate aggrega~
tion which have been applied to complex ecological models [8]. The method works when the fast
system possesses a stable equilibrium [9] and also with a stable limit cycle [10].

In ecological models, it is usually assumed that the lowest trophic level grows logistically. As
a consequence, these models do not obey mass conservation laws. In this paper, the lowest level
is nonviable and the models for the dynamics of the food chains are derived using the mass
conservation law which imposes a constraint on the state variables. This facilitates the reduction
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of the system by one variable, that is, by perfect aggregation. The aggregated variable is defined
as first integrals of the whole system. Generally, mass conservation laws also provide first integrals
which are needed to derive the aggregated system of a lower dimension for an ecological system,
where spatial or behavioral heterogeneity are taken into account [8,9]. For the food chains
studied here, we assume homogeneous mixed populations. Singular perturbation techniques can
be applied for approximate aggregation when ingestion and growth rates are smaller in higher
trophic levels. The method resembles the one applied to slow-fast systems in [11-13], for instance,
forest pest models. Generally, with a perturbation technique the slow variables are frozen when
the equilibria of the fast system are calculated. In our approach, these slow variables are treated
as time dependent parameters. This facilitates incorporation of higher-order terms for the slow
system. This gives a better approximation without extra computational efforts.

We will consider two environmental conditions for the food chain, namely, the batch and the
chemostat. For batch cultures, we start with three ODEs. Because of conservation of mass, one is
able to decouple the system into two ODEs and one for the total biomass being the first integral
of the system. Because of the different time scales, we can approximate the system further by
one ODE for the predator only. We start with linear functional responses and continue with
Holling type II functional responses. In the case of linear functional responses, the aggregated
system is described by the well known logistic growth equation. The carrying capacity and the
intrinsic growth rate are expressed in terms of parameters of the full system, as well as the initial
conditions for the state variables. In the case of the chemostat, these results can be obtained
only under particular initial conditions. In general, the resulting equation for the growth of the
predator is the logistic growth equation with time-varying parameters, the intrinsic growth rate
and the carrying capacity.

2. BATCH CONDITIONS

Let zo(t) and z1(t) denote the mass density of the resources, respectively, the biomass densities
of the prey. A simple model for well-mixed populations without death in a closed region is a set
of two coupled ordinary differential equations (ODEs)

d.’lt()
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dzy _ To
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For the biological meaning of the parameters, the reader is referred to Table 1.

Table 1. Parameters and state variables for both full and reduced model: t = time,
m = biomass, v = volume of the region of interest.

Parameter Unit Interpretation
t t time
T t fast time variable
To m-v~1  resource density
z; m-v~1  biomass density
Ty m-v-1 substrate concentration in reservoir
D -1 dilution rate
ki1, m-v~1  ‘saturation’ constant
I 11 food uptake rate coefficient
i1 t~1! population growth rate coefficient
Vi—-1,i - yield
i t—! intrinsic growth rate
K; m-v-1 carrying capacity
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The first equation shows that the resources diminish at a rate proportional to the biomass den-
sities 1, and the scaled density of resources z/ko,; with proportionality constant, the ingestion
rate Ig1. The second equation models how resources are converted into biomass. The specific
population growth rate is proportional to the scaled density of resources with proportionality
constant ug,.

One unit of mass of the resources is converted into yo,; units of biomass of the prey, where
Yo,1 < 1 is called the yield; which we here take to be constant. The fraction of resources that
are not converted to biomass remains in the closed region, for instance as facces which means
that the yield is yo,1 = p0,1/fo,1. The initial conditions at ¢ = 0 are z4(0) and z1(0), the initial
densities of resource and biomass, respectively. They complete the mathematical formulation of
the problem.

Since neither resources are supplemented nor biomass is harvested, a weighted sum of resources
and biomass must remain constant. We may therefore define a weighted sum by

t
Caft) = moft) + 22, 3)
Yo,1
such that an equivalent set of ODEs reads
dCs,
dz, C2 — z1/yo,1 (5)

E = uﬂ,lml_'k—",

'

with an initial condition for C; from equation (3). In effect, we have decoupled the system.
The solution of equation (4) is C(t) = C2(0). Substitution into equation (5) directly leads to

logistic growth model
dr; _ z1
praladate! (1 K1) . (6)

The parameters r; and K are given by

r = %02(0), K1 = y0,1C2(0). (7)

Hence, the intrinsic growth rates r; and the carrying capacities K; depend on the initial condi-
tions. This case was analysed in [4]. The stable equilibrium values are =3 = 0 and z} = K; =
¥0,1C2(0). The resources are eventually exhausted.

2.1. Introduction of a Predator

We introduce a predator (i = 2) feeding on the prey (i = 1) with ingestion rate I2. Thus, a
bitrophic food chain consisting of resources zo, one prey z; and one predator z, is considered.

The prey-to-predator yield is y;,2 and we define 0,2 def Yo,¥1,2- The equations become .

d:L‘o Zg
=0 _— g =

€ dt O'leko,l (8)
dz, _ To I

Ep = Mot Fox €I1,2mz2a (9
d.’Ez _ 3}

[ dt _E”I’2k1,2x2’ (10)

where ¢ = 1. Below, the parameter ¢ will be used to separate the time scales of the model. We
may again introduce a weighted sum

Calt) = mo(t) + 28 4 2200 (11)
Yo,1 Yo,2
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We obtain an equivalent of equation (4), namely, d—d-(’;l = 0, now supplemented with equa-
tions (9),(10), where zo(t) = C3(0) — x1(t)/y0,1 — 2(t)/¥0,2 should be substituted. In [14,15), it
was pointed out that the resulting model for the lowest trophic level is not the logistic growth
model, as is often assumed in ecological models.

When the interaction between prey and resources is much faster than the interaction between
predator and preys, that is, when £ < 1, it is possible to use the aggregation method. In biological
terms, the predator eats slowly (I small), and therefore, it grows slowly (i small).

The fast system reads, with 7 = t/e being the fast time variable,

dZy _ I

20 _ g

ar 0,171 For (12)
dZ, _ )

g~ Hoa1 ko1 (13)

In stable equilibrium, the fast variables are Zy = 0 and Z; = yo,1C2(0). The parameter C3(0) is,
however, not a constant of motion for the full system. Therefore, to obtain the reduced model
we must replace it by its expression related to C3(0) which is the constant of motion for the full
system
Z2(t)
Ca(t) = C3(0) = (14)
y 3
Equation (10), after substitution of the equilibrium values (Zo and Z,), becomes the slow
system. It reads

dZo _ I
—dT = 1ol (1 — Kz) s (15)
with
y"k“‘l 120000, Ki = y0205(0). (16)

This is the classical logistic equation again. The intrinsic growth rate rg is the growth rate on the
prey times the constant of motion for the full system. The carrying capacity K is the yield of the
predator on resources times the constant of motion for the full system. Because C3(0) depends on
the initial conditions Zo(0), #1(0), and Z(0), the same holds true for the parameters rs and Ko.

The solution Z5(¢) of equation (15) is used to calculate the fast state variables Z,(t) = 0, and
the biomass density of the prey Z;(t) using equation (14) together with Z;(t) = yo,:1(C3(0) —
x2(t)/yo,2). This completes the solution of the reduced system.

3. CHEMOSTAT CONDITIONS

Under chemostat conditions, we have a continuous influx or resources and an efflux of both
resources and individuals of the prey. For a linear (Lotka-Volterra) functional response, the
foregoing set of equations is modified to read

dxy _ To

? = (.’Er — CL‘())D - I()‘].’Elr, (17)
dzry g

o = Mot ko Daz,, (18)

»

where D is the dilution rate and z, is the concentration of the resources in the reservoir. It is

easy to show that with

z1(t)
]

’

Hy(t) = zo(t) — zp + (19)
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we obtain the equivalent set of equations:

dH,
a —DHy, (20)
dry _ Ho(t) + z, — z1/y0,1

g - Hoata ko -~ Dzx,. (21)

Starting the culture such that (2o(0} — z,) + 21,1(0)/y0,1 = 0, (H2(0) = 0), the set of equations
is equivalent to the extended logistic growth equation

d(IIl Tl ¢

5 = e (1 - R—l) Dz,, (22)
with 7y and K, given by i

ry = BT Ky =z:90,1- (23)

ko1 '
When H3(0) # 0, the logistic equation holds only asymptotically for ¢ — co. Substitution of
H, = Hy(0) exp{—Dt} in equation (21) gives

dz, H3(0)exp{—Dt} + x, — z1/¥0,1
~ = Ho,1Z1
dt ko,1

Hence, the predator does not quite grow logistically for general initial conditions.

3.1. Introduction of a Predator

We introduce a predator into the chemostat equations. A bitrophic food chain consisting of
resources, a prey, and a predator is considered

d.’L‘o
= - D — 1 €
ey = (@r —zo)e 0,1T17— ko - (25)
dxl _ Zo I
e = Mo Fox ely, 2Ic1, zg — Dz, (26)
dz z
E—dfo = 6'“1,2%-1—,1—2-2}2 - €Dz2. (27)

A function H3(t) is now defined as Hs(t) = (zo(t) — zr) + z1(t)/yo,1 + Z2(t)/y0,2 Where we used
Yo,2 = Yo,1¥1,2- It is easy to show that 4—5{1 = —DHj holds true, and therefore, we have H3 =
H3(0) exp{—Dt}. Starting with H3(0) = 0, the set of equations is equivalent to equation (26)
together with equation (27) where zg is given by zo(t) = =, — z1(¢)/yo,1 — 2(t) /¥0,2, t > 0. This
relationship is just the mass conservation law for the whole chemostat system and this facilitates

perfect aggregation. Three nonnegative equilibria exist. A single positive equilibrium exists when

27 thoape + krzlos
eD Ho,141,2

(28)

One of the eigenvalues of Jacobian in this equilibrium equals —eD. Routh-Hurwitz criteria, see for
instance [1], can be used to show that the real parts of the other two eigenvalues of the Jacobian
have negative real parts when inequality (28) is satisfied. Therefore, the positive equilibrium is
stable.

We will now apply the singular perturbation theory in the case that the prey dynamics feeding
on resources is fast and that the predator dynamics feeding on the prey is slow. We start assuming
that the initial conditions are such that H3(0) = 0. The fast system is then

dz i
—ETE = (:1:,. .'l:o)eD Io 1T koo (29)
dz e _ -

Ty - Tr —T1/Y0,1 — T2/Yo,2 el 5 I %y — eDF4, (30)

= = Ho,1T1
ar F ko,1 k2
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where 7 = t/e is the fast time variable again. In these equations, the terms with eD and
ey are retained and this yields a higher-order approximation. When the ingestion rate Iy 5 of
the predator is small, the dilution rate D has to be small in order to prevent wash-out of the
predator. In stable equilibrium of the fast system, the biomass density of the prey Z; is obtained
from equation (30)

- T2 koy (Zalh2 ))
T = Ly — —— = E_’.. ——— + D s 31
tE ol ( " w2 Mot ( k1,2 (81)
and then for the resources _ _
~ Il T2
To=Tp— — — ——. (32)
Yo,1  Yo,2

Observe that we did not freeze the slow variable Z; at its initial value, as is usually done in
singular perturbation technique, see for instance [11,13].

The value for Z; can now be substituted in equation (27) for the slow dynamics of the predator.
This yields

dZz _ Yo,11,2 ( ) ko1(I12Z2/k12 + D)
Lol g -

To — DZ,. 33
dt k1,2 Yo,2 Mo,1 ) 2 ? (33)

Substitution in equation (33) gives

di - ( 52) £1,2Y0,1K0,1 (Il2 )

2 oz (1R} - EL2IOIR0L (25 L D %, — Dis, 34
? K, po,1k1,2 k12 2 2 (34)
which is once more the classical logistic equation again with

_ H1,2ZrY0,1

A ) K3 = yo,2%. (35)
1,2

When H;3(0) # 0, the following logistic growth equation with time-variant parameters holds
true:

_ _ Iz
dZz _ yoath,2 <H3(0)exp{—Dt} v F2_ FoalliaZa/kip + D)
dt k1,2 Yo,2 Ho,1

)

) F9 — DI, (36)

This is equation (34) with time-variant parameters

_ p1,2(H3(0) exp{—Dt} + z,)y01

To(t) = Fia K>(t) = yo,2(H3(0) exp{~Dt}z.,). (37)

The ODE, equation (36), can be transferred into a linear ODE by substitution of a new variable
1/%4 and thus be readily solved.
3.2. Hyperbolic Functional Response

For the bitrophic food chain in the chemostat with a Holling-type II functional response for
the predator-prey interaction, the governing equation read

dxo To
>0 _ — D—1 =

€ o (z, — z0)e 0,1%1 Fox (38)
dz, o)) X2
1 2 el e—2 4 D

e~ Hoasig~ —ehap——mas — Dy, (39)
d$2 Ty
= = —————— 19 — eDxs.

I ’ €1,2 Fiaton x93 —eDxg (40)

Prefect aggregation is also possible in this case by the introduction of Hs(t) = zo(t) — z, +
z1(t)/yo,1 + z2(t)/yo,2, so that 45—{3 = —DHj. Equilibrium values may be found using the
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Figure 1. Bifurcation diagram of fast system with =, = 1200mgdm~3. Density of
prey as a function of density of predator. Limit cycle is z1(t) [mgdm™3] as function
of z2(t) [mgdm=3] for full system. The trajectory ABCD is ‘limit cycle’ for reduced
system. Point A is a tangent bifurcation point and point C a transcritical bifurcation
point, both for the reduced system. Two stable branches of the fast equilibrium
manifolds are B—C and D—A.

procedure described in the previous sections. When the first-order terms are neglected, one
equilibrium with Z; = 0 is always unstable, while the interior equilibrium point with £ = 0 and
- T2
Z; = H3(0) exp{—-Dt} + z, — Yoa (41)

’

is stable. This expression is substituted in the slow system, equation (40),

dZzy _ 2% _ - (42)

’

This result constitutes the reduced system which can be solved numerically. Subsequently, the
density of the resources £ = 0 and the density of the prey Z;, equation (41), may be calculated.
The slow system, equation (42), has one stable equilibrium. However, it is well known that the
full system can possess stable limit cycles. This is associated with the ‘paradox of enrichment’,
that is, for constant D and increasing values of z, the equilibrium of the full system becomes
unstable at a Hopf-bifurcation point. This transition shows that the qualitative behaviours of
the two systems differ when higher-order terms are neglected in the aggregation step.

The derivation of the reduced system including higher-order terms proceeds as follows. There
are now two fast equilibrium manifolds. One is given by Z; = 0. This trivial branch Z; = 0 is
stable when

_ (p0,1(H3(0) exp{—Dt} + x,) — eDko,1)k1,240,2 (43)

To > X
2re to,1k1,2 + €11 2ko,1%0,2
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Figure 2. The density of the predator as a function of time t[h], with z, = 300 mg
dm~3 and initial condition z3(t) = 5mgdm=3. Solid line is for the full system
z2(t) [mgdm™3] and dashed line is for the reduced system #2(t) [mgdm=3).

The other equilibrium manifold is determined by the two roots of the following equation:

T k k
72~ (yo,l (HB(O) exp{—Dt} + z, — 22 ——1—2> - MeD) Z
Yo,2 Yo Ho,1
Z2\ K (49)
- (kl.zyo,l (Ha(O) exp{—Dt} + z, — —2> — M0 D+ 1'1,252)> =0.
Yo,2 Ho,1

The point where the discriminant of the quadratic equation (44) is zero constitutes a tangent
bifurcation point. The Z1, value for this point is given by

, T k k
Iy, =05 (yo,l (Hs(o) exp{~Dt} + 2, — —> ~ ‘1‘2) - MeD) : (45)
Yo,2 Yo,1 Ho,1

When 7, <0, the nontrivial positive equilibrium manifold is stable. This positive value can be
substituted in equation (42) and this yields the reduced system.

In Figure 1, the bifurcation diagram for the fast system is given. When Z;, > 0, there is a
tangent bifurcation, denoted by A in Figure 1. For values of Z; > Z,., the equilibrium manifold is
stable whereas for 0 < Z; < Z1,., it is unstable. The quadratic equation intersects the £; = 0 axis
in a transcritical bifurcation, denoted by C in Figure 1, where T2 = x5, is given by equation (43).
Below the T; = 0 axis, Tz < T2, the nontrivial branch of the equilibrium manifold is stable
again, but here the situation is biologically not relevant. It was shown that in the transcritical
bifurcation point, point C in Figure 1, the trivial branch Z; = 0 changes also stability.

The trajectory ABCD, which switches between the two equilibrium manifolds, constitutes a
quasi-limit cycle for the reduced system. Depending on the initial conditions, the system con-
verges quickly to a stable equilibrium manifold of the fast system. When Z2(0) < z3,, it starts
on the positive and stable part of the nontrivial branch and when £3(0) > z2,, on the stable part
of the trivial branch. When z;,, < £2(0) < z2,, there are two stable equilibrium manifolds.
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Figure 3. The density of the prey as a function of time t[h}, with z, = 300 mgdm~—3
and initial condition 1 (t) = 150 mgdm™=3. Solid line is for the full system 1 (t) [mg
dm™3] and dashed line is for the reduced system #;(t) [mgdm—3].

Table 2. Parameter set for the substrate-bacterium-worms model I;_1; = pi—1,;
/yi—,i. Values of control parameters are D = 0.001h~! and z, = 300mgdm=3
or £, = 1200mgdm—3, Initial values of the three state variables are zo(0) =
50.0mgdm™3, 21(0) = 150.0mgdm~3, and 22(0) = 5.0 mgdm~3.

Parameter Units . Values .
i=1 1=2
Yi-1, - 04 0.6
Hi-1,4 h-! 0.5 0.01
ki—1,i mgdm~—3 1000 1000 linear functional response
1000 50 hyperbolic functional response

When £;(0) lies below the curve AC in Figure 1, the system starts on the trivial branch with
% < 0. When Z;(0) lies above the curve AC, the system starts on the nontrivial branch with

% > 0. In other words, the curve AC is a separatrix.

As a consequence of the presence of the term H3(0)exp{—Dt}, the fast equilibrium manifolds
change slowly in time. For the full system, we have asymptotically lim;_., H3(0) exp{—Dt} = 0.
The separation criterion [12] applies, that is, when the equilibrium value for the full system
satisfies £ = Dky 2/(p1,2— D) > Z1,, the full system has one stable equilibrium. However, when
z} < &1, the equilibrium is unstable. We conclude that the criterion Dk; o/(1,2 — D) = T4,
where I, is given in equation (45) with H3 = 0, determines a Hopf bifurcation.

The present bifurcation analysis resembles that of a resources-consumers system analysed
in [12], where the renewable resources grow logistically, a Holling-type II functional response
is assumed as well as a linear death term for the consumers. That system is equivalent with
the system consisting of equations (39) and (40) where zo(t) = z, — 1(t)/yo.1, see also [14,15].
With logistic growth of the resources, the relationship equation (44) reduces to a simple parabola,
see [12] and it is time-invariant.
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Figure 4. The concentration of the resources as a function of time t[h], with z =
300mgdm—3 and initial condition zo(t) = 50mgdm~3. Solid line is for the fuli
system zo(t) [mgdm~3] and dashed line is for the reduced system Zo(t) [mgdm~3].

4. SIMULATION RESULTS

For the chemostat system, the solution of the reduced and full systems are compared in Fig-
ures 1-4. In Table 2, a survey of the parameter values is given. These values are realistic for
a bitrophic food chain consisting of substrate, bacterium, and worm. Such food chains occur
in waste-water treatment plants. The values for the bacteria growing on substrate are taken
from [16,17], and those for the worms growing on sludge based on data given in [5].

Figure 1 displays for z, = 1200 mgdm™3, the calculated stable limit cycle of the full system.
We conclude that this limits cycle and that of the reduced system (ABCD) differ considerably.
Obviously, the separation of the time scales for the prey-resource and the predator-prey interac-
tion is incomplete for the parameter values used here (Table 2).

When there is a stable equilibrium the situation is more favourable. In Figures 2-4, the time
evolution of the three state variables is shown for the full system as well as the reduced system.
As is to be expected, the differences for the density of the resources and the prey for small
time ¢ are rather large when the initial conditions differ considerably from the equilibrium values.
Asymptotically, the predicted biomass densities in the reactor for both models are almost the
same. This arises as a consequence of our approach to take higher-order terms (dilution and
predation) into account with the calculation of the equilibria of the fast system.

5. DISCUSSION AND CONCLUSION

For a bitrophic food chain application of aggregation methods, perfect as well as approximate,
yields a single ODE for the dynamics of the predator. With a linear functional response, this
model is the logistic equation in batch condition, whereas in chemostat condition the parameters r
and K are generally time varying. When the functional response is hyperbolic the reduced
equation is never the logistic equation.
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The simulation results show the benefits of the aggregation methods. Time evolution curves
for the reduced and full models are rather close to each other after the transient fast process has
died out when there is a stable equilibrium of the full system. When the full system has a stable
limit cycle, the qualitative behaviour is the same for both the aggregated model and full model,
but for the time evolution curves in the limit cycle the difference is not acceptable, given the
parameter values used here.

In a forthcoming paper, we will apply the same technique to food webs. In that case there
exist several populations at each trophic level. Then the reduced model is not the classical
logistic equation but rather the Lotka-Volterra competition model. This means that the resulting
dynamics is much richer. For instance, predators at a trophic level can either coexist or exclude
each other. It is clear that the applicability of that model for ecological systems, is much broader
and also potentially more effective since the reduction of the dimension of the state space can be
much larger.

In nature, ecological communities are sometimes composed of groups of species with strong
interactions in the same group and weak interactions between different groups corresponding to
hierarchically organized communities [18-20]. Numerical simulations of Lotka-Volterra commu-
nities involving many species have also shown that after a transient phase during which several
populations get extinct, the final structure of the community is hierarchical. In future studies,
we intend to use aggregation techniques to simplify hierarchical community graphs. This will be
done by aggregating populations of each group into a single compartment described by its total
biomass being the aggregated variable. For each isolated cluster, mass conservation laws will be
observed.
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