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Abstract—In this work, we are interested in prey-predator models. More precisely, we study the
spatial heterogeneity effects on the amount of prey eaten per predator per unit time, when different
time scales occur. This amount and its relation with the amount of predators produced via the
predation are interesting from an ecological point of view. Indeed, the knowledge of these quantities
permits us to quantify the transfer of the biomass in the food chain. Our aim is to show how the
spatial heterogeneity acts on these amounts. We consider prey-predator systems in a multi-patch
environment. We show that density dependent migrations make emerge new models on the total
population level and we exhibit some examples. Furthermore, we show that the aggregation method
is a good tool for describing the mechanisms hidden behind complex models.
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INTRODUCTION

In the years 1925-1926, Lotka and Volterra have proposed the first mathematical predator-prey
model
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This model assumes that the prey density growth exponentionally in the absence of the predator
and that the predator density decays exponentially (Malthus Law). The second main assumption
is that the amount of prey disappearing per unit time and the amount of predator produced per
unit time are proportional to the number of the encounters (Mass Action Law). If these laws
could be acceptable in an homogeneous environment, as it is the case in some chemistry examples,
their applications are limited in ecological environments, which are generally heterogeneous ones.
More complex models have been proposed in order to avoid the problems of the Lotka-Volterra
model (see [1,2] for example). Some authors proposed mechanistic arguments to explain their
model: their mechanisms use assumptions on the individual behavior. In this paper, we show
why the aggregation method provides a tool for the construction of predator-prey models via a
mechanistic approach. :

In the next section, we present a detailed model with two time scales: one is associated to
the individuals level, the other one is associated to the population level. We use the aggregation
method in order to obtain simpler models governing the population densities and in which emerge
some complex functional responses. In the following section, we give some examples where the
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emerging functional responses are known (Holling Type II and Beddington-de Angelis functional
responses). In the fourth section, we give an example in which a new model emerges.

THE MODEL

Many predator-prey models have been proposed. Among these models, a large part consist of
models which has the following form:
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where f(N) is the per capita prey growth rate in the absence of the predator, u is the predator per
capita death rate in the absence of the prey, g(N, P) is the amount of prey eaten per predator and
per unit time and eg(N, P) is the per capita production of predator due to predation. Note that
in this case, the predator growth rate is proportional to the amount of eaten prey. The function
g(N, P) is generally called the functional response and the per capita production of predator due
to predation, eg(N, P), is called the numerical response. The functional response plays a main
role in models (2): the knowledge of this function determines the dynamics of the whole system
and it determines the transfer of the biomass in the food chain because it is proportional to the
numerical response.

Many authors proposed different functional responses (one can refer to {3-5] for comparative
tables). These functions are build on the basis of phenomenological arguments. In this paper, we
are interested in the construction of functional responses with mechanistic arguments. By using
the aggregation methods, we can understand the link between the functional response and the
individuals dynamics.

Now, we propose a predator-prey model in a multi-patch environment. It permits us to take into
account the spatial heterogeneity. Furthermore, we shall consider some aspects of the individuals
behavior: the individuals migrations depend on their behavior. Consequently, we assume that the
migrations process takes place at the individuals time scale which is shorter than the population
time scale. The interaction between the populations are assumed to be as simple as possible:
for example, by considering that each patch is quasi-homogeneous, we apply the Mass Action
Law on each patch. For the sake of simplicity, the model presented here is a two patches model.
The general case can easily be deduced from our model but the calculations should be more
complicated and should not present any interest. The global model has the following form:
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where N; and P; are the prey and predator densities on patch 1, k{}’f , and k{; are the prey and
predator migration rates from patch j to patch ¢ and these rates can be functions depending on
the prey or predator densities, r; is the prey growth rate in the absence of predator on patch %, u;
is the predator death rate in the absence of prey on patch ¢, A; is the predator attack rate on
patch i and e; is the conversion efficiency of the predator on patch i. The small parameter ¢ < 1
is used because the migration process is faster than the other ones.
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Now, we construct the aggregated model: we assume that the fast part of the model (3),
obtained by putting € = 0, has an equilibrium. This equilibrium is calculated by solving the
system

k{3(N1, N2, Py, Pa)Ny — k3] (N1, Na, Py, Po)Ny =0,

k31 (N1, Na, Py, Py)Ny — k{3(N1, No, Py, P2)N2 =0,

kﬁ(NlaNz,Pl9P2)P2 - kﬁ(N19N21 PI’P2)P1 = 01

k$1 (N1, Na, Py, P3) Py — kf3(N1, Na, Py, P2) P = 0,
with respect to Ny, N2, P;, and P,. We denote with a star * the solutions of the system (4):
Nf, Ny, P}, and Py. Let the total population densities be: N = N; + N, and P = P, + P,.
These total densities are constant at the short time scale: their derivatives vanish when € = 0. Let
the equilibrium frequencies of subpopulations be: uf = N}/N and v} = P}/P. The aggregation
method allows us to formulate the aggregated model in the form:

(4)

N
i (riu] + roug) N — (Arujv] + Aaugvy) NP + Ofe),

dP * ok * L * ok

Et" = = (ﬂlvl + lLQU2) P ‘+‘ (elAlulvl + 32A2U2'U2) NP + O(E),
where t = £7 is the long time (population time scale). If the model (5) with € = 0 is structurally
stable, then we can neglect the terms of order of ¢ from a qualitative point of view. Note, that in
the two populations case, the set of structurally stable population models is an open and dense
set in the space of the two populations models (see for example [6]). In other words, the model
which are not structurally stable are rare. Hence, in this case, the functional response at the
population level is:

()

g(N, P) = (Ajujv] + Aujvi) N, (6)

where the equilibrium frequencies can be functions on N and P, thus the functional response (6)
is not necessarily a Lotka-Volterra’s one. The formula (6) shows the link between the functional
response at the population level and the equilibrium frequencies which are the result of the
individuals dynamics. In the next section, we present two examples of known functional responses
and we propose migrations behaviours which lead to these functional responses. Furthermore, in
each case, we calculate the whole aggregated model.

EXAMPLES OF KNOWN FUNCTIONAL RESPONSES

Among all the known functional responses, some ones are more used because they are simple
and believe empirical arguments. In this section, we show how the aggregation method leads to
these models. What is the interest of presenting known results with new tools, which a priori
seem to be more complicated than the original ones? One can answer this question with two
arguments. First, the method permits to build many functional responses and as we shall show,
many individuals dynamics may lead to the same functional response. The known mechanisms
proposed for the known functional responses are not the only ones possible. The aggregation
method permits us to find other examples of mecahnisms for a fixed functional response. Also,
from a theoretical viewpoint, it is interesting to investigate what are the individuals dynamics
leading to a given populations dynamics model. However, the best way from a biological point
of view should be to determine what are the actual scenarii of migrations for example and then
to deduce the corresponding aggregated model. The second argument is that the aggregation
method is a general one for constructing population models with a mechanistic approach and, in
such a case, it is necessary to verify that it “contains” the known mechanisms.

A first example of known functional response is the Holling Type II one:
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Q(N,P)=1—:§N,



66 J. C. POGGIALE

where A and B are positive numbers. The mechanism that leads to this functional response can
be found in [3,5]. The main idea is the saturation of the predator when the prey density is large.
Now, we propose two mechanisms leading to this functional response. In the first one, we assume
that the prey migrates randomly between the patches and that the patch 2 is a refuge for the
prey and a rest patch for the predator: the predator attack rate on the patch 2 is null (4; =0
in (3)). Finally, we assume that when the prey density on patch 1 is large, the predator migration
rate from the predation patch to its rest patch increases. This scenario is the translation of the
Holling mechanism in our formalism. The model (3) becomes:
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where k{}{ are constants, and k5, = v = C*, kf; = 6N;. In this case, a straightforward calculation

shows that u} = C*, vi = v/( + dujN). Consequently, by using formula (6), we deduce that

— (N = Ayt —
g(N, P) = g(N) ——A1u17+5u;NN, (9)
which is a Holling Type II functional response. The whole aggregated model is:
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where A = A ul, B = 6uj/vy and e = ey (1 — t2)6/A1+. It follows that the mechanism proposed
by Holling can easily be interpreted in the formalism of the aggregation method. Note, that
in model (10) the prey and predator densities are unbounded. Consequently, the prey densities
on each patch are unbounded and one can object that the small terms in model (8) become
large after a long time: the aggregation method cannot be applied after this time. It is easy to
avoid this problem by replacing the malthusian prey growth by a logistic one. It does not change
anything in the calculations above and lead to a logistic prey growth at the population level: then
all the densities are bounded and the aggregation is always valid. We have chosen a malthusian
prey growth because it shall simplify the further calculations, where the previous problem will
not occur.

We propose now a second mechanism which leads again to the Holling Type II functional
response. We assume again that the patch 2 is a refuge patch for the prey and a rest patch for
the predator. However, we assume now that the predator migrates randomly and that the prey
migration rate from the predation patch to its refuge increases when its density is large. Finally,
we assume that the growth in the refuge is negative because this patch does not contain resource,
for example. It follows that A2 = 0 again and that r5 = —dy < 0. The migration rates are
kE = C' for the predator and k{5 = a = C*, k] = BN for the prey. The complete model has
still the form of the model (8). The equilibrium frequencies are u} = a/(a + SN) and v} = C*e.
The formula (6) gives again the functional response:
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In this case, we still obtain the Holling Type II functional response with another mechanism.
It can be proved [7] that in this example, the prey growth in the absence of the predator in
the population model is a logistic one. So, all the densities are bounded which means that the
aggregation method is valid without time limitation. The predator equation has the same form
as in model (2).

We shall study the case of another functional response which is now depending on both prey
and predator densities: the Beddington-de Angelis functional response. Its expression is:
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9N, P) =1 ENTCP

(12)
where A, B and C are positive numbers. One can refer to [4,5] for more details. The main ideas
hidden behind this formula are:

— there is a saturation effect when the prey density is large,
— when the predator density is large, the individuals must fight to obtain their food and
spend some time before the catching: their attack rate decreases.

Once again, we translate these ideas in our formalism by using the migration rates. Yet, the
form of the model is that of model (3). We assume that the patch 1 is a refuge patch for the
prey and that for the predator, the patch 2 corresponds to a state in which the individuals do not
take care of the prey (they fight or they rest for example). The prey migrates randomly between
its refuge and the predation patch. When the prey density on the predation patch is large, the
predator finds easily its food, it stops to forage rapidly: its passage rate from the foraging state
to the rest state increases. Furthermore, when the predator density increases, its passage rate
from the foraging state to the fighting for food state increases too. The “migration” rates can
be written as follows: k{}( are constant and kf, = v = C*, kf, = §N; + AP. The equilibrium
frequencies corresponding to these rates are: u? = C*, vf = v/(y + 6u}N + AP). One can now
deduce the functional response of the population model by using formula (6):
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(13)
where A = Au}, B = éuj/y and C = A/y. The known mechanism of the Beddington-de
Angelis functional response can thus be included in the aggregation method formalism. The
whole population model is:

N =rN —g(N,P)P,

dt

P (14)
P —u(P)P + e(P)g(N, P)P,

where g(N, P) is given by formula (13), u(P) = (u1y + p2AP)/(y + AP) and e(P) = e;+(uz— 1)
(6AP)/(Ar(y + AP)).

An important consequence of these expressions is that the numerical response is not propor-
tional to the functional response. The mechanism proposed for the Beddington-de Angelis func-
tional response breaks the structure of the models (2). It means that when we use a mechanistic
approach in order to study a part of a model, we must consider the effects of the mechanism on
the other parts. This fact seems obvious but it must be recalled as it has important consequences.

Let us consider another scenario leading to the same functional response. We still consider
the model (8) where we assume that r2 = —dz < 0, the predator migrates randomly. The
prey migration rate from the predation patch to its refuge is assumed to increase when the prey
density is large or also when the predator density on the predation patch increases (the prey tries
to avoid the capture). The migration rates are ki‘; = C*¢ for the predator and kf} = o = C*,
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k3 = BN +0oP; for the prey. The resulting equilibrium frequencies are u; = af(a+ BN + ov}P)
and v} = C*¢. The formula (6) again permits us to calculate the functional response:

AN
g(N’P)_1+BN+CP’ (15)
where A = A;vf, B = B/a, and C = ovj/a. The mechanism described above provides us a
second mechanism for the Beddington-de Angelis functional response. The whole population

model can be expressed as follows:

N _ {(N)N - G(N, P)P,

dt

AP (16)
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where g(N, P) is given by (15), f(N)N = (riaN)/(a + BN)(1 — (d28N)/(r1a)) and G(N, P) is
the impact of one predator on the prey density per unit time. A calculation proves that:

G, P) = g, P) + 1 = o) (14 200 ) o, ). an)

As a consequence, the predator acts on the prey density not only by the predation, but also by
forcing the prey to migrate to a patch where its growth rate is less favourable (see [8] for more
details). Once again, the structure of the model (2) is broken while it occurred in each patch and
a new structure emerges at the population level.

In the next section, we propose an example where the functional response and the aggregated
model are new.

EXAMPLE OF A NEW PREDATOR-PREY MODEL
WITH A NEW FUNCTIONAL RESPONSE

In the previous section, our reasoning was to find the individuals dynamics leading to a given
functional response. We proceed in another way in this section. Indeed, now, we choose migration
rates and we investigate the population model corresponding to them. We study the obtained
dynamics.

The general form of the complete detailed model is still form (3) with r, = —dy < 0 and we
assume again that the patch 2 is a refuge for the prey (A, = 0). We assume that the predator
migrates randomly. The prey avoids the predator in the predation patch and when the prey
density increases, the prey migration rate from the refuge to the predation patch increases. The
expressions of the migration rates are:

kY, = aN,
k% = ﬂpl,
P te (18)
kig=7v=0C",
k5 =6 =Cte.
The resulting equilibrium frequencies are:
u = aN
17 aN + gulP’
. pP
Uy = ,
aN + B} (19)
* 7 _ te
U 7+ § 3
6
'U; = — = te.
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As the formula (6) always holds, the functional response is:

2
AlavIN

9(N,P) = aN 1P

(20)
Note, that the aggregation can be applied only if the prey density or the predator density on
patch 1 are sufficiently large else the prey migration rates should be small and the fast process
should become slow.

The aggregated model reads:

aN . (r1 + d2)Bv} + aA v P N
at —\"’ aN + Bui P :
dP e1A1via
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(21)

where p = pyv] + pgvs. The mathematical analysis of this model can be found in the appendix.
It shows that this model has a positive equilibrium which is a focus. A Hopf bifurcation can
occur when the parameter values vary. In fact, if the prey death rate d in the refuge is greater
than the predator death rate u then the focus is unstable and it is stable when d2 is lower than p.

The main goal of this section was to show that simple individuals dynamics models associated
to the aggregation method leads to new predator-prey models (refer to [8] for other more complex
examples). Furthermore, it proves again that even if the local models (in each patch) have the
structure of model (2) then the aggregated model has an emergent structure in which the role of
the functional response is not the most important.

CONCLUSION

As we showed in this work, the aggregation method provides an efficient tool for the construc-
tion of models with a mechanistic approach. A formula as (6) proves that it is possible to relate
analytically the individuals dynamics and the population dynamics. In the predator-prey models
case, we have noted that the known reasoning used to build models can easily be included in the
aggregation method formalism. Furthermore, we have proved that some simple other individuals
behaviors could lead to the known functional responses. An important point to notice is that
with the mechanistic approach, the structure of the models (2), which is generally used, can be
broken. When one explains a part of a model with a mechanism, one must study the effects of
this mechanism on the other parts.

From a biological viewpoint, the method should be used in an other way. An interesting way
to proceed is to determine how the individuals migrate for example, to modelize the fast part
and finally, to apply the method in order to obtain the populations dynamics models.

APPENDIX
MATHEMATICAL ANALYSIS OF MODEL (21)

Let us consider the system:
d_N =(r (r1 + dz)ﬂvf + aAvi P N
dt aN + pv P ’
i?i _ €1A1'Ufa
it = M T AN+ puiP

(A.1)

We begin by performing a change of coordinates in order to simplify the system. We consider
the following variables:

z = aN, y = Bvi P, and 0 = rt. (A.2)
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In this system of coordinates, the system (A.1) reads:

dz 1 (r1+d2)Bv} + 14170;“ Yy
110

=" Tty
(A.3)
dy _ k() el 2¥
dé 1 pux T+y .
We can again simplify the expression of the system by considering the new parameters:
A= M > 1’
1
A *
B= aﬁi:*];" >0,
] 1 (A.4)
=—>0
4 ™ >4,
Y= e1A1v]
ap

We multiply the system by the positive function (z,y) — x + y, hence the resulting system has
the same trajectories. It is the following:

& e a(e - (41 - Bry),
dé
(A.5)
d_ —py (z +y — va?)
dé ’
There are equilibria out the axis, they are given by the formulas:
ot = —((A-1)v - B) £ /(((A-1)v — B)2 + 44ABv)
2Bv ’ (A.6)

y = (vt — 1)

There is at most one positive equilibrium, obtained in putting the sign + in the first formula
in (A.6). In fact, one can easily check that this equilibrium exists for all values of the positive
parameters. Now, we look at its stability and we show that a Hopf bifurcation occurs when the
parameters vary. The linear part of (A.5) is given by the matrix:

z*(1- By*) z*(1-A- Bz*)
( -py*(1 - 2vz*) -py* ) ' (A7)

Let T be the trace of this matrix and D be its determinant. One can check that
T=y"(A-1-p),

and that
D = pz*y*(Bv(z*)? + A).

This equilibrium is then a focus or a node. The sign of T determines its stability. Clearly, it is
possible to choice the parameter p more or less large, in a such way that the sign of T changes.
This change leads to a Hopf bifurcation.
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