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Abstract. This paper is devoted to the study of a predator-prey model ina patchy environment.
The model represents the interactions between phytoplankton and zooplankton in the water col-
umn. Two patches are considered with respect to light availability: one patch is associated to the
surface layer, the second patch describes the bottom layer.We show that this spatial heterogeneity
may destabilize the predator-prey system, even in oligotrophic system where the nutrient is low
enough to avoid “paradox-enrichment” phenomenon. Indeed,in this case, an heterogeneity index
can be used as a bifurcation parameter, leading to a Hopf bifurcation. Moreover, we assume that in-
dividuals can be dispersed in both patches via hydrodynamism processes, like in a mixed layer. The
effect of mixing intensity is analysed as well as interactions between dispersion and enrichment.
We also show that, in some cases, spatial heterogeneity has astabilizing effect. These contrasted
results are examined by considering the non linear interaction between heterogeneity, dispersal and
enrichment and some mechanisms leading to stabilization/destabilization are exhibited.

Key words: spatial heterogeneity, enrichment paradox, singular perturbations, bifurcations
AMS subject classification:92D25, 58F35, 34A47, 92D40

1Corresponding author. E-mail: jean-christophe.poggiale@univmed.fr

87



J.-C. Poggialeet al. Enrichment Paradox Induced by Heterogeneity

1. Introduction

It is well known that spatial structure can exhibit significant effects on spatially distributed popu-
lations or communities dynamics. These effects are variousand some methods for integrating ex-
plicit spatial processes in population dynamics models have been extensively discussed (see [21],
[24],[6] for instance). Spatial structures can result frombiotic interactions themselves ([27], [26])
but also from environmental constraints ([25]), which shall be the case in our paper. The effects of
dispersion on the stability of equilibrium has been discussed in many papers (see [4] and references
therein for a detailed discussion). Roughly, effects of different factors, like dispersion rates inten-
sity, on populations or communities dynamics have been analyzed from the individuals behavioral
level ([4], [16]) or the population level ([31], [28]) to themetapopulation level ([36]), the commu-
nity level ([10], [12], [22], [7], [30], [20], [25], [26]) and the ecosystem level ([23]). In most of the
previous works at the population or community levels, authors are interested in the role of spatial
structure on the dynamics stability. However, some works deal with other concepts like perma-
nence ([8]) or persistence ([32], [1]). Nowadays, it is admitted that spatial heterogeneity induces a
complexity in the analysis of population or community dynamics, from the observation as well as
from the theoretical point of view ([34]). Some further investigations are needed to improve our
knowledge on the effect of spatial structure on models analysis. In previous works ([29], [30]),
we suggested a method based on time scales separation in order to simplify patchilly distributed
models to analyze the effects of spatial heterogeneity on population dynamics. In our work, spatial
heterogeneity means that some parameters (growth rates, predation rates, etc.) can differ from one
patch to another, for some reasons. In [35] for instance, theauthors analyzed the effects of spatial
heterogeneity on the stability of a predator-prey system ina patchy environment where a patch
was a refuge for the prey. This refuge affects the global predation rate which modifies the stability
of the predator-prey dynamics. This paper illustrates namely that even in rich environments, the
destabilization can be avoided and the mechanisms for this solution of the “Enrichment paradox”
suggested in this article refer to the reduction of interactions intensity between prey and predator
via the refuge. In [29], we studied a similar system with a predator-prey in a patchy environment
and a refuge for the prey. From the ecological point of view, our results were roughly similar to
those obtained in [35] but we shown how our method can be useful for providing analytical results
at the global level, even in a particular case where the time scale separation application is more
subtle. In [26], the authors show that an auto-organized spatial structure (spatiotemporal chaos) in
a homogeneous environment can also prevent extinction of populations and resolve the paradox of
enrichment.

In the present paper, we still analyze a predator-prey modelin a patchy environment. We con-
sider a vertically structured water column in which light penetration is limited. Even if nutrients do
not concentrate in the immediate vicinity of the surface, itroughly results that only phytoplankton
cells located high enough in the water column are able to growthanks to the light while cells in
the bottom can not (or only poorly) photosynthesize. This spatial structure of light availability
induces spatial heterogeneity in phytoplankton cells population growth. Hydrodynamism in mixed
layer permits to the phytoplankton cells to disperse in the water column and to take benefit from
light at some times. Zooplankton also disperses in the watercolumn and grazes on phytoplankton.
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We study how the light-induced spatial heterogeneity affects the predator-prey interactions and the
resulting dynamics. We show that even in oligotrophic ecosystems, oscillations may result from
the spatial heterogeneity. In [18] and [19], the authors show that coupled oscillations of daph-
nia and algae are common in the field. Nevertheless, the amplitudes of the oscillations are rather
small and the destabilization induced by nutrient increasedoes not occur. However, in [11], the
authors present a real phytoplankton-zooplankton system in a chemostat, which exhibits the Hopf
bifurcation induced by enrichment. Thus the effect of enrichment on stability is really unclear and
relations between laboratory and fields results need to be analyzed in the framework of a theory
which can explain their paradoxal results. As it is already explained in [35], spatial heterogeneity
probably plays a role in the fields and its effects can be complex: for instance, if results from [35]
can lead to the conclusion that some aspects of heterogeneity are stabilizing, we show that other
aspects are destabilizing.

Indeed, in the present paper, we explain how the destabilization can occur even for low local
carrying capacities, that is in environments which are poorin nutrient, if heterogeneity is high
enough. We first explain how the above mentioned conditions may lead to an effective carrying
capacity of the water column larger that it should be. As a consequence, the zooplankton - phyto-
plancton community may exhibit oscillations even in ratherpoor nutrient environments. We then
analyze the mechanisms under which spatial heterogeneity can lead to this result.

In the next section, we present the phytoplankton - zooplankton model. We provide a mathe-
matical analysis in some range of the parameter values, namely when dispersion rates are very low
or very high. In the former case, the analysis is based on the idea that a low intensity of disper-
sion rates leads to a quasi separation of patches which are studied separately. The latter case need
singular perturbation techniques which are briefly recalled. In the fourth section, we complete the
analytical results by some numerical studies which permit to improve our understanding of the role
of spatial heterogeneity. The different factors like enrichment, heterogeneity and dispersion rates
intensity are used as bifurcation parameters in order to compare homogeneous and heterogeneous
situations. A conclusion ends the paper.

2. The phytoplankton - zooplankton model

2.1. System description and general assumptions

We consider a phytoplankton (prey) - zooplankton (predator) system in a two patches environ-
ment. In the water column, the vertical distribution of the phytoplankton species resources is
not homogeneous. For instance, the light availability exponentially decreases with depth and the
nutrients distribution depends on the hydrodynamics conditions. Roughly, the water column hy-
drodynamics can range from a rather well mixed to a stratifiedstate. The former situation occurs
for instance under windy conditions at the sea surface and leads to a quasi-homogeneous distri-
bution of nutrients. The latter situation results in a heterogeneous distribution of nutrients, which
are less concentrated at the surface and present a sharp concentration increase at the thermocline
depth [17]. The heterogeneous spatial distributions of both light and nutrients result in a spatial
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variability in phytoplankton growth rate. The growth rate optimum depends on particular distribu-
tions of resources and there is no general consensus in the literature to situate it with precision, but,
roughly, it is either very close to the surface (well mixed column) or anyway no deeper than the
thermocline (stratified column). In our paper, we vertically split the water column in two patches
and we assume that the limit is set under the growth rate optimum deepness, so that the growth rate
in patch 1 (upper layer) is larger than the growth rate in patch 2 (deeper layer).

We then also assume that the water layer represented by patch1 is less thick than the water
layer represented by patch 2. As an example, patch 1 can represent a layer with a depth comprised
between 0 and 30–40 m while patch 2 corresponds to a layer from30–40 m to 120 m. As a
consequence, dispersion rates from patch 1 to path 2 are higher than dispersion rates from patch
2 to patch 1. Indeed, at any time, among individuals of the thin patch 1, a high proportion are
bounded close to the interface with patch 2 and are thereforesusceptible to cross it downwards,
whereas the proportion of individuals of patch 2 close to theinterface is rather small compared to
all the individuals lying in the remaining great volume of patch 2. We insist that the hypothesis
applies on theper capitadispersion rates and not on the fluxes of individuals at the interface on
which we do not make anya priori assumption.

We finally make the following general assumptions for the model: on each patch, the phyto-
plankton population growth is governed by a logistic equation and the consumption rate by zoo-
plankton is represented by a Holling type II functional response.

2.2. Model description

We consider the following model:

dx1

dτ
= dx

2
x2 − dx

1
x1 + ε

(

r1x1

(

1 − x1

K1

)

− ax1
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y1

)
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(

e
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b + x2

− m

)

y2 , (2.1d)

wherexi andyi are respectively the phytoplankton and zooplankton abundances on patchi. ri is
the phytoplankton intrinsic growth rate on patchi, Ki is the carrying capacity on patchi, a is the
per capitamaximal ingestion rate of phytoplankton,b is the half-saturation constant, that is the
abundance of phytoplankton for which the ingestion rate is half the maximal ingestion rate,e is
the conversion efficiency andm is the zooplankton natural death rate. The parameterdx

i (resp.dy
i ),

wherei = 1, 2, is the dispersion rate from patchi to the other patch for the phytoplankton (resp.
zooplankton) population. Finally,ε is a dimensionless parameter which permits to account for
different time scales. Whenε is small (ε ≃ 0), the dispersion between patches is much faster than
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the demographic processes (growth, predation and death). According to the assumptions listed in
the previous sub-section, we have :dx

1
> dx

2
, dy

1
> dy

2
andr1 > r2.

3. Mathematical analysis of the model

3.1. Low dispersion rates

If we assume thatε is very large, the system (2.1) is a small1

ε
-perturbation of the system:
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whereθ = ετ . This four-dimensional system is actually composed of two separated two-dimensional
sub-systems, one on patch 1 and the other on patch 2 ; both of them are Rozensweig McArthur
models. They are structurally stable, thus the1/ε-perturbation does not affect the dynamics from
the qualitative point of view. On each patch, there are threepotential equilibria:(0, 0), (Ki, 0) and
(xe,i, ye,i), wherei = 1 or 2. The equilibrium(xe,i, ye,i) is positive only ifea > m andKi > xe,i.

More precisely, we havexe,i = mb
ea−m

andye,i = r
a

(

1 − xe,i

Ki

)

(b + xe,i). The equilibrium(0, 0) is

a saddle point for each sub-system. IfKi < xe,i on patchi then the equilibrium(Ki, 0) is globally
asymptotically stable in the sense that all initial conditions with positive coordinates reach this
equilibrium. If Ki crosses the valuexe,i then a transcritical bifurcation occurs ; whenK i > xe,i,
the equilibrium(Ki, 0) is a saddle point. The equilibrium(xe,i, ye,i) is globally asymptotically sta-
ble, in the sense given above, ifKi < b+2xe,i. LetKi,c = b+2xe,i: this value is a Hopf bifurcation
value of the local carrying capacity parameter. IfKi > Ki,c then the positive equilibrium(xe,i, ye,i)
is unstable and the trajectories initiated in the positive quadrant reach a limit cycle. In the present
manuscript, we will now assume that on each patchxe,i < Ki which means that, separately, both
sub-systems have a positive equilibrium which is globally asymptotically stable ifKi < Ki,c. It
follows that when the dispersion is very low and ifKi < Ki,c, the system (2.1) exhibits a globally
asymptotic stable equilibrium (details of this analysis can be found in [5] for instance) ; this result
is illustrated on figure (1).
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Figure 1: This figure illustrates the dynamics of the phytoplankton and of the zooplankton on each patch with
model (2.1), for low dispersion rates. On each graphics, there are two curves. The black lines exhibit the patch 1
dynamics, the dashed grey ones show the patch 2 dynamics. Theparameters values are the following:r1 = 6 ;
r2 = 1 ; K1 = 2.1 ; K2 = 2.1 ; a = 1.2 ; b = 0.9 ; d

x

1
= 4 ; d

x

2
= 1 ; d

y

1
= 4 ; d

y

2
= 1 ; e = 0.8 ; m = 0.5 ;

ε = 100.

3.2. High dispersion rates : Aggregation of variables on the water column

If we assume thatε is small, we can use the singular perturbation theory in order to aggregate the
phytoplankton population and the zooplankton population on the whole water column. In other
words, let us considerx = x1 + x2 the total phytoplankton population abundance andy = y1 + y2,
the total zooplankton population abundance, then we can write a two-dimensional model governing
these global variables (see [2] for a detailed explanation and examples of the method). In order to
get this model, we first consider the non pertubated system byletting ε = 0 in system (2.1):

dx1

dτ
= dx

2
x − (dx

1
+ dx

2
) x1 (3.3a)

dy1

dτ
= dy

2
y − (dy

1
+ dy

2
) y1 (3.3b)

dx

dτ
= 0 (3.3c)

dy

dτ
= 0 . (3.3d)

According to this system, the global variablesx andy are constant and the vector(x1, y1, x, y)
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tends to(u1x, v1y, x, y), whereu1 andv1 are the proportion located in patch 1 of the preys and
predators in the whole column, at equilibrium. After a shorttransient time, the fast dispersion
leads to a constant frequency of prey and predator populations on patch 1. The frequencies are:

u1 =
dx

2

dx
1

+ dx
2

; u2 = 1 − u1

v1 =
dy

2

dy
1
+ dy

2

; v2 = 1 − v1

We can reduce the previous four-dimensional system (2.1) tothe following two-dimensional sys-
tem:
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y , (3.5b)

wheret = ετ , r = r1u1 + r2u2 andK =
rK1K2

r1u2

1
K2 + r2u2

2
K1

. The functional response at the global

level is thus:
G (x) = g (x) x

where

g (x) = a

(

u1v1

b + u1x
+

u2v2

b + u2x

)

.

The equilibria of this system are:E1 = (0, 0), E2 = (K, 0) and, whenm < ea, E3 = (xe, ye),
wherexe is the unique solution of the equation:

G (x) =
m

e
.

If m > ea, this equation has no solution. A straightforward algebraic manipulations leads to:
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Moreover,ye is defined by:

ye = r

(

1 − xe

K

)

g (xe)

thus ye is positive only if K > xe. The functional responseG = x.g satisfies the following
properties, for allx ≥ 0:

G (x) ≥ 0

G′ (x) > 0

g′ (x) < 0 .
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Then the stability ofE3 is obtained if the isocliney = r

(

1 − x
K

)

g (x)
is decreasing at the equilibrium.

In other words,E3 is stable if the derivative of the function:

x 7−→ r

(

1 − x
K

)

g (x)

is negative atx = xe. This leads to the following conditions:

0 < −
(

1 − xe

K

)

g′ (xe) <
m

eKxe

It is easy to write the previous condition with respect to thecarrying capacityK:

K < xe −
m

exeg′ (xe)

Let Kc = xe −
m

exeg′ (xe)
. If K < Kc, then the positive equilibrium is locally stable, while

if K > Kc, then the positive equilibrium is locally unstable and a stable limit cycle appears.Kc

is a Hopf bifurcation value of the carrying capacity parameter. Figure (2) illustrates the similarity
between the complete model (2.1) and the reduced one (3.5).

3.3. High dispersion rates : Comparison between homogeneous and hetero-
geneous situations

We show in this subsection that the spatial heterogeneity induced by light and described by differ-
ences in ther andK local values, can lead to oscillations which would not occurin the homoge-
neous case. More precisely, we shall compare the situation wherer1 6= r2 (heterogeneous case) to
the situation wherer1 = r2 (homogeneous case) and we show that, with the above listed assump-
tions and for a given set of parameters, the homogeneous casecan lead to a globally asymptotically
stable equilibrium while the heterogeneous case can exhibit oscillations.

In [28], we considered a system of one population living on two patches with high dispersion
rate and for which the growth on each patch was governed by logistic equations. In that paper,
the local carrying capacitiesK1 andK2 were assumed to be the same:K1 = K2. We shown that
the total population was following a logistic growth too. Moreover, in the heterogeneous situation,
which was represented byr1 6= r2, we shown that the global carrying capacity could be larger
thanK1 + K2 = 2K1, in consequence of the nonlinearities of growth in a variable environment.
Supposer1 > r2 (in the opposite case, the inequalities must be changed by permuting the indexes),
the established condition to get the result was:

r1

r2

>
dx

1

dx
2

> 1

The result can be extended to the situation whereK1 6= K2. The condition becomes:

K2r1

K1r2

>
dx

1

dx
2

>
K2

K1

(3.6)
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Figure 2: This figure illustrates the dynamics of the phytoplankton and of the zooplankton in the whole system,
in heterogeneous conditions. On each graphics, there are two curves. The black lines are obtained with the
complete model (2.1) while the dashed grey ones result from the aggregated model (3.5). The parameters values
are the following:r1 = 6 ; r2 = 1 ; K1 = 2.1 ; K2 = 2.1 ; a = 1.2 ; b = 0.9 ; d

x

1
= 4 ; d

x

2
= 1 ; d

y

1
= 4 ; d

y

2
= 1 ;

e = 0.8 ; m = 0.5 ; ε = 0.05.

and the proof is the same as that in [28]. Let us assume that these inequalities are satisfied. We
thus know that the total carrying capacityK of the phytoplankton population can be enlarged by
the spatial heterogeneity induced by the differences between the growth rates on both patches.
However, the bifurcation valueKc is the same in the homogeneous and in the heterogeneous case
since it does not depend onri andKi. It follows that in the heterogeneous situation, the global
carrying capacity can be larger thanKc while it is not the case in the homogeneous situation with
the previous assumptions. As a consequence, spatial heterogeneity can lead to a destablization of
the positive equilibrium and may result in the occurrence ofpopulations fluctuations. This result
can be illustrated by comparing figures (2) and (3). Indeed, these figures are obtained with the same
parameter values excepted for the parameterr1. On figure (2), parameterr1 is 6 (that isr1 > r2)
what corresponds to a heterogeneous environment while on figure (3),r1 = r2, what corresponds
to a homogeneous environment.
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Figure 3: This figure illustrates the dynamics of the phytoplankton and of the zooplankton in the whole system, in
homogeneous conditions. On each graphics, there are two curves. The black lines are obtained with the complete
model (2.1) while the dashed grey ones result from the aggregated model (3.5). The parameters values are the
following: r1 = 1 ; r2 = 1 ; K1 = 2.1 ; K2 = 2.1 ; a = 1.2 ; b = 0.9 ; d
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4. Intermediate dispersion rates and general numerical results

In this section, we extend the previous results to intermediate dispersion rates. As we shown in the
previous section, we could deal with differentKi on both patches, which would be more realistic.
However, for the sake of simplicity, we decided to setK1 = K2 := K, what still let us explore
the effects of spatial heterogeneity of local resources richness but through one single parameter
(ri). We investigate the role of spatial heterogeneity, dispersion rates intensity and resources rich-
ness on the stability of the system, which is here represented by the local stability of the positive
equilibrium, with model (2.1). In order to perform this analysis, we proceed in three steps. In the
first step, we analyze the stability of the predator-prey model by means of a bifurcation diagram in
the richness - dispersalplane for two extreme environment conditions: homogeneousand hetero-
geneous. The second step deals with the analysis of the effect of dispersion rates on the structure
of the bifurcation diagram in theheterogeneity index - local carrying capacityplane. Finally, we
study the effect of the local carrying capacity on the structure of the bifurcation diagram in the
dispersal - heterogeneity indexplane. The bifurcation analyses were performed using continuation
technics by means of the software (matlab toolbox) Matcont [9].
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4.1. Effect of spatial heterogeneity

We first compare the effect of enrichment and dispersion rates intensity in two types of environ-
ments ; one is homogeneous while the second is heterogeneous. The homogeneous situation is
obtained by settingr1 = r2, the heterogeneous case satisfies condition (3.6). In both cases, we
determined the bifurcation diagram in the(K, ε)-parameter space. The difference between the ho-
mogeneous case and the heterogeneous case, illustrated on figure (4) is important. In the former
case, the system has a stable positive equilibrium for low carrying capacity, whateverε value is,
that is whatever the intensity of dispersion is, in the rangewe considered. In the latter case, the
system has a stable positive equilibrium for lower dispersion rates, whatever the carrying capacity
is in the range we considered. From the ecological point of view, it means that a Hopf bifurca-
tion occurs in the homogeneous case when the carrying capacity increases, that is by enrichment.
However, in the heterogeneous case, the Hopf bifurcation needs less enrichment to occur when the
dispersion rates increase (smallε), that is when the mixing induced by hydrodynamics processes
is intensified.

ε

K

Homogeneous case

2 2.5 3 3.5 4
0

0.5

1

1.5
ε

K

Heterogeneous case

2 2.5 3 3.5 4
0

0.5

1

1.5

Figure 4: On this figure, an homogeneous case (left) and an heterogeneous case (right) are compared. They
are simulated with model (2.1). The homogeneous case corresponds to identical prey growth ratesr1 = r2

(and we set these parameters to 1) and the heterogeneous casecorresponds tor1 6= r2. In this case, we set
r1 = 6 andr2 = 1. We compare these situations for various local carrying capacities and various dispersion
rates intensities. The white regions, the “stability regions”, indicate the existence of a stable equilibrium ; gray
regions correspond to “unstability regions” where no stable equilibrium exists (the same color code will be kept
in the figures that follow). The figure illustrates that the main bifurcation parameter involved in the destabilization
(Hopf bifurcation) is the carrying capacity for the homogeneous case whereas it is the dispersion intensity rates
for heterogeneous case. Note the persistence of the unstability region for low values ofK in the heterogeneous
case. The parameters values are the following:K1 = 2.1 ; K2 = 2.1 ; a = 1.2 ; b = 0.9 ; d

x

1
= 4 ; d

x

2
= 1 ;

d
y

1
= 4 ; d

y

2
= 1 ; e = 0.8 ; m = 0.5. ε varies from0.01 to 1.
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4.2. Effect of dispersion rates intensity

In order to understand how the spatial heterogeneity affects the organization of these bifurcation

diagrams, we define an heterogeneity index by the ratio of thegrowth rates:α =
r1

r2

. The ho-

mogeneous case corresponds toα = 1 and spatial heterogeneity increases withα. Even if spatial
heterogeneity increases whenα decreases from 1 to 0, we do not consider this situation which
does not lead to the condition (3.6). Figure (5) illustratesthe result by means of bifurcation dia-
grams in the parameter space(K,α), for different dispersion rates intensities measured byε. We
can see on the left panel of figure (5), obtained for high dispersion rates (ε = 0.05), that when the
heterogeneity indexα increases, the region of stability decreases, enhancing the result that, for a
given resources richness, heterogeneity can have a destabilizing effect and can generate fluctua-
tions in populations densities. Figure (5) shows how this destabilization is organized when spatial
heterogeneity increases, for various dispersion intensities. We can see that the effect of spatial
heterogeneity is more important for high dispersion rates since when these rates decrease (ε in-
creases), the dependence of the bifurcation diagram on the heterogeneity index tends to disappear
and the region of stability of the positive equilibrium spreads throughout the bifurcation diagram.
It is noticeable that for these intermediate dispersion rates, the carrying capacity needed to destabi-
lize the system is very high, even in the homogeneous situation. The stabilizing effect of dispersal
is highlighted here. Increasingε means decreasing the dispersion rates, which leads to an isolation
of patches and the local parameters are such that on each isolated patch, the population densities
reach equilibrium values. It follows that for very high value of ε, the bifurcation diagram should
not depend onα and should exhibits a behavior, with respect toK, similar to what is expected on
each patch when isolated. This situation is only obtained for very high values ofε.
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Figure 5: In this figure, we represent the destabilizing effect induced by an increased carrying capacity according
to the ratio of the growth ratesα =

r1

r2

, which is a measure of spatial heterogeneity. The three panels correspond
to different levels of dispersion rates, from very fast dispersion (left,ε = 0.05), intermediate dispersion rate
(middle,ε = 0.8), to slow dispersion (right,ε = 10). Note the enlarged scale of the x-axis in the right panel.
The left-panel figure illustrates the enlargement of the unstability region when the heterogeneity increases, for
high dispersion rates. As the dispersion rate gets lower (intermediate and slow dispersion), the effect of spatial
heterogeneity diminishes, while the stability region fillsup the diagram (right panel). Parameters values are the
following: r2 = 1 ; a = 1.2 ; b = 0.9 ; d

x

1
= 4 ; d

x

2
= 1 ; d

y

1
= 4 ; d

y

2
= 1 ; e = 0.8 ; m = 0.5.

98



J.-C. Poggialeet al. Enrichment Paradox Induced by Heterogeneity

4.3. Effect of local carrying capacity

In this last step, we analyze a bifurcation diagram in the(ε, α)-parameter space, see figure (6).
A small region of unstability exists for very high dispersion rates (smallε) and a large region of
unstability exists for low dispersion rates. These regionsare separated by a large region of stability.
Let us note that the chosen local carrying capacity value is such that if the patches were isolated, the
dynamics on each patch would exhibit limit cycles. It follows that for a given heterogeneity index,
the system is unstable for very high dispersion rates. Intermediate dispersion rates stabilize the
predator-prey system. The very low dispersion rates case looks like a system of isolated patches,
with fluctuations. The width of the stability region is greater for high values of the heterogeneity
indexα.
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Figure 6: This figure illustrates the combined effects induced by spatial heterogeneity, measured withα =
r1

r2

and dispersion rates intensity, given byε. The other parameters values are the following:r2 = 1 ; a = 1.2 ;
b = 0.9 ; d

x

1
= 4 ; d

x

2
= 1 ; d

y

1
= 4 ; d

y

2
= 1 ; e = 0.8 ; m = 0.5 ; K = 5. For greater values ofK, the stability

region would enlarge, while the right hand unstability region would disappear ifK gets smaller.

A systematic study with regards to variations ofK let us precise the behavior of the system
(unshown result): when the local carrying capacityK increases, the stability region narrows down
and only a small window of dispersion rates values can stabilize the system; at the opposite, when
K gets too small, the high-ε unstability region disappears, what corresponds to the expected regime
of equivalent isolated patches.

5. Conclusion

According to previous works like [35] or [29], for instance,spatial heterogeneity affects the stabil-
ity of predator-prey systems. However, we illustrated how this factor acts in a complex way and
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leads to apparent contradictory effects. We associated it with two other factors, namely the disper-
sion rates intensity and the resources richness, in order tosee how they all interact and to dispell
this contradiction in enlightening its origin. These two other factors have been chosen because the
literature also largely associates them with stability issues in predator-prey systems. For instance,
in chemostat, enrichment can lead to destabilization, as authors shown experimentally in [11].

Moreover, as we mentioned in the introduction, some works like [13] exhibited the stabilizing
effect of dispersal. However, in this work, even if there is aheterogeneous distribution of popu-
lations induced by predator-prey interactions, the environment is homogeneous. We shown here
that spatial heterogeneity can reduce or enhance this stabilizing strength of dispersion. In a real
marine system, dispersion rates can be very low as well as very high according to hydrodynamics
constraints. We therefore analyzed the extreme situationsanalytically by means of aggregation
techniques for instance and we extended the results to intermediate situations by using numerical
bifurcation analysis. These approaches were already combined in previous works ([3] for instance)
and this combination reveals itself to be efficient for understanding the dynamics of rather high di-
mension nonlinear systems.
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