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Abstract

This paper presents an original size-structured mathematical model of the energy flow through marine ecosystems,
based on established ecological and physiological processes and mass conservation principles. The model is based on a
nonlocal partial differential equation which represents the transfer of energy in both time and body weight (size) in marine
ecosystems. The processes taken into account include size-based opportunistic trophic interactions, competition for food,
allocation of energy between growth and reproduction, somatic and maturity maintenance, predatory and starvation mor-
tality. All the physiological rates are temperature-dependent. The physiological bases of the model are derived from the
dynamic energy budget theory. The model outputs the dynamic size-spectrum of marine ecosystems in term of energy con-
tent per weight class as well as many other size-dependent diagnostic variables such as growth rate, egg production or pre-
dation mortality.

In stable environmental conditions and using a reference set of parameters derived from empirical studies, the model
converges toward a stationary linear log–log size-spectrum with a slope equal to �1.06, which is consistent with the values
reported in empirical studies. In some cases, the distribution of the largest sizes departs from the stationary linear solution
and is slightly curved downward. A sensitivity analysis to the parameters is conducted systematically. It shows that the
stationary size-spectrum is not very sensitive to the parameters of the model. Numerical simulations of the effects of
temperature and primary production variability on marine ecosystems size-spectra are provided in a companion paper
[Maury, O., Shin, Y.-J., Faugeras, B., Ben Ari, T., Marsac, F., 2007. Modeling environmental effects on the size-structured
energy flow through marine ecosystems. Part 2: simulations. Progress in Oceanography, doi:10.1016/j.pocean.2007.05.001].
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Trophic interactions between organisms are the main drivers of marine ecosystems dynamics. In particular,
they allow the transfer and the dissipation of solar energy through ecosystems, along food chains, from primary
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producers to top predators. In marine systems, many species interact within complex trophic networks where
bottom-up as well as top-down controls interfere continuously (e.g., Cury et al., 2003). Understanding how
environmental variability such as changes in primary production or temperature impacts ecosystems and ulti-
mately fish stocks and reciprocally how fishing upper trophic levels impacts lower trophic levels requires reliable
models based on realistic representations of energy fluxes through ecosystems. However, most marine ecosys-
tems are extremely diverse, heterogeneous and poorly known. Modelling their dynamics explicitly down to the
species level is challenging. Hence, most models of marine ecosystems rely on rough species and functional
groups partitioning and use fixed predation rates between groups (e.g., Polovina, 1984; Walters et al., 1997;
Pauly et al., 2000). Alternatively, aggregated approaches based on size have been undertaken, taking into
account allometric losses (respiration), predation and growth processes. In those approaches, phytoplankton
is implicitly used as the source term of size-structured continuous mass-balance equations. The marine ecosys-
tem is represented using a single aggregated state variable (e.g., a biomass) which experiences size-dependent
growth and mortality (Platt and Denman, 1978; Silvert and Platt, 1978, 1980; Dickie et al., 1987; Cushing,
1992; Platt and Denman, 1997; Arino et al., 2004; Benoit and Rochet, 2004). Those models rest on the funda-
mental assumption that size is the most structuring dimension of ecological systems along which their dynamics
can be projected. Many ecological traits (including population abundance, growth rate and productivity, spa-
tial niche, trophic, competitive and facilitative relationships between species) as well as metabolic processes are
indeed well correlated with body size (Sheldon et al., 1972; Blueweiss et al., 1978; Gillooly et al., 2001; Brown
and Gillooly, 2003; Marquet et al., 2005; West and Brown, 2005; Woodward et al., 2005). Furthermore, because
most marine organisms are highly opportunistic feeders and because prey size is limited by the allometric diam-
eter of predator’s mouth (Bone et al., 1999), predator–prey relationships are, in many marine systems, mostly
determined by size (Lundvall et al., 1999; Scharf et al., 2000; Jennings et al., 2001 and Jennings et al., 2002; Shin
and Cury, 2004). For instance, Jennings et al. (2001) showed that body mass explained 93% of the variation in
trophic level among 15 fish communities in the North Sea. Because it captures so many aspects of ecosystem
functioning, body size can therefore be used to synthesize a suite of co-varying traits into a single dimension
(Cousins, 1980; Woodward et al., 2005).

As Woodward et al. (2005) state, ‘‘the challenge now is for empiricists to produce highly resolved food webs
that are quantified in terms of population dynamics, energetics and chemical fluxes, and for theoreticians to
develop new and more realistic size-based models, so that emerging ideas can be explored and tested more
rigorously’’. Furthermore, ‘‘size-based models are easier and cheaper to parameterise than most food-web
models’’ (Jennings et al., 2002). In this perspective, we model environmental influences on the dynamics of
marine ecosystems with a size-spectrum approach. Primary producers are explicitly distinguished from con-
sumer organisms and a mechanistic approach allows us to take into account various ecological and physio-
logical processes supposed to be determining in the functioning of marine ecosystems:

� Size-structured opportunistic trophic interactions where producers are potential preys for consumers and
where all consumer species are considered to be potentially prey and predator at the same time (Shin
and Cury, 2004);
� Predators competition for preys;
� Allocation of energy between growth and reproduction;
� Somatic as well as maturity maintenance based on the dynamic energy budget (DEB) theory (Kooijman,

1986, 2000, 2001; Nisbet et al., 2000);
� Size-dependent nonpredatory mortality;
� Starvation mortality;
� Temperature-dependence of organism’s physiological rates.

It is expected that considering explicitly the physiological bases of metabolism, the main constraints which
control trophic interactions and the size-structured nature of those processes will help to better understand the
various modes of energy transfer through marine ecosystems and their response to environmental forcing.
Furthermore, a mass-balanced formulation is used to represent the functioning of marine ecosystems in a
quantitative way, assessing the actual energy flux from primary production to apex predators as well as the
top-down effects that upper trophic levels have on the overall ecosystem. To keep consistency with bioener-



O. Maury et al. / Progress in Oceanography 74 (2007) 479–499 481
getic studies and to avoid the complexity of explicit stoichiometric formulations based on chemical elements,
our model is expressed in term of energy. Energy has to be understood as a currency measuring ‘‘the ability to
do work’’ (Kooijman, 2000). It has to be noted that given homeostasis assumptions, all mass fluxes in organ-
isms can be deduced from energy fluxes (Kooijman, 1995; Sterner and Elser, 2002). In our approach, energy is
simply assumed to be proportional to biomass. This implies an assumption of strict homeostasis and constant
chemical stoichiometry between organisms.

After a detailed presentation of the hypothesis and formulations of our model, a sensitivity analysis is
undertaken to asses the impact of each parameter on the steady state size-spectrum. In a companion paper
(Maury et al., 2007), we present numerical simulations of our model focusing on the effects of primary pro-
duction and temperature variability on the size-spectrum of marine ecosystem.

2. The model

2.1. Notations and state variables

The main state variable we are dealing with is nt,w, the distribution function of the energy content of the
marine ecosystem (J kg�1 m�3) at time t 2 [0, +1[ and weight w 2 [0, wmax] in 1 m3 of seawater. nt,w is a density
with respect to body weight and seawater volume. It can easily be converted into the more usual ‘‘normalized
biomass size-spectrum’’ using the mean energetic content of one unit of biomass w (J kg�1) which is assumed
to be a constant parameter. Hence, the quantity of energy in the weight range [w1,w2] per m3 of seawater is
given by

R x¼w2

x¼w1
nt;x dx and nt,w is related to Nt,w, the distribution function of the number of individuals in terms

of weight (kg�1 m�3) at (t,w) in 1 m3 of seawater, with nt,w = w Æ w Æ Nt,w.
The symbols u, v, w, x are continuous indices which refer all to the weight dimension. Weight is supposed to

be related to length with a fixed allometric function w = al3.
According to basic ecological theory, marine ecosystems can be schematically divided into three distinct

components using fundamentally different means to mobilize energy: producers, consumers and decomposers
(Valiela, 1995). For the sake of simplicity, the present study ignores the third component and focuses on the
two first components with a particular emphasis on the consumers group (Fig. 1). Hence, our model has two
main components:

� the primary producers (autotrophic organisms mostly composed of phytoplankton) which convert solar
energy and mineral nutrients into biomass and whose weight belongs to [0,w1];
� the consumers (heterotrophic organisms encompassing numerous taxonomic groups of zooplankton and

nekton) which gain energy solely by predation and whose weight belongs to [wegg,wmax]. Consumers do
reproduce, their eggs have a weight wegg > 0 and their maximal weight is wmax > w1.

The distribution function of the energy content of the producer and consumer groups are noted respectively
np

t;w and nc
t;w so that the distribution function of the energy content of the ecosystem is nt;w ¼ v½0;w1�n

p
t;wþ

v½wegg ;wmax�n
c
t;w with v½x1;x2� being the characteristic function which is equal to one in the interval [x1,x2] and to

zero elsewhere.
Weight0 w w w

Consumers
Primary

producers

ξ

Weight0 w w

Consumers
Primary

producers

ξ

Fig. 1. Schematic representation of the weight structured ecosystem distinguishing primary phytoplanktonic producers from predatory
consumers (log–log).
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2.2. Dynamics

To avoid an explicit modeling of phytoplankton growth and reproduction, the energy density of producer
organisms is assumed to be uniformly distributed over [0,w1]. Consequently, the size-dependent predatory
mortality applied by all consumer organisms (see Eq. (8)) is averaged over the producers size range [0, w1]
to ensure that the producers size distribution remains constant at all time. The dynamics of phytoplanktonic
organisms is then expressed as follows:
dnp
t;w

dt
¼ 1

w1

Pt � np
t;w

Z x¼w1

x¼0

kt;x dx
� �

� np
t;wMI 8w 2 0; w1½ � ð1Þ
With Pt (J s�1 m�3) the primary energy production which enters the system at time t, which constitutes the
only external source of energy of the whole ecosystem, MI (s�1) the nonpredatory mortality rate affecting pri-
mary producers and kt,x (s�1) the mortality rate due to predation at time t and weight x.

The bio-ecological processes taken into account to model consumers are predation, mortality, assimilation
and use of energy for maintenance, growth and reproduction. The basic equation used to describe the energy
fluxes through the weight range of consumers combines a transport term for representing the growth process
and three sink terms for predatory, nonpredatory and starvation mortality processes. It is based on the Mc
Kendrick–Von Foerster equation which is usually used in population dynamics (e.g., Tuljapurkar and
Caswell, 1997; Kot, 2001) and which is written as follows in the interval ]wegg,wmax] assuming given initial
conditions for t = 0:
onc
t;w

ot ¼ �
oðct;wnc

t;wÞ
ow � ðkt;w þ Zw þM starv

t;w Þn
c
t;w 8w 2�wegg; wmax�

nc
0;w ¼ n0

w

8<
: ð2Þ
where c (kg s�1) is the growth rate, k (s�1) is the mortality rate due to predation, Z (s�1) is the loss of energy
from the system due to nonpredatory mortality and Mstarv (s�1) is the starvation mortality rate. For all those
coefficients, the subscripts t and w refer to time and weight.

The input of eggs Rt (J s�1 m�3) into the system due to reproduction is taken into account assuming a
Dirichlet boundary condition in w = wegg:
ct;wegg
nc

t;wegg
¼ Rt ð3Þ
The derivation of explicit expressions for all the coefficients of Eqs. (2) and (3) (kt,w, ct,w, Rt, M starv
t;w and Zt,w) are

provided in the five subsections below.

2.2.1. The predation process: calculation of kt,w

Predation can be viewed as a loss of energy for preyed weight classes and a gain of energy for predating
weight classes. In the model, predation is supposed to be opportunistic and only controlled by the ratio of sizes
between organisms. Hence, all organisms can be potentially predators and preys at the same time, depending
on their relative weight (or size) (Fig. 2).

To be able to calculate the quantity of food available to a predator, the size-based constraints on predation
have to be specified. For that purpose, the selectivity su,w 2 [0, 1] is defined as the capability for a consumer
organism of weight u to eat an encountered organism of weight w. Assuming that predation can occur if
the ratio of predator length over prey length is comprised between two q1 and q2 extreme values (Fig. 3b),
su,w is a normalized function expressed as the product of two sigmoid functions which account for the limita-
tion of ingestion when preys are either too small or too large (Fig. 3a):
Fig. 2. Schematic representation of weight (size) structured energy flow through the ecosystem.
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Fig. 3. (a) Limitation curves for preys too large to be ingested (black dots), preys too small to be ingested (open circles) and resulting prey

selectivity function s2,w as a function of prey length w
a

� �1=3
for a 2 m long predator (q1 = 3, q2 = 100, a1 = 5 and a2 = 0.05). (b) Selectivity

function su,w versus prey length w
a

� �1=3
and predator length u

a

� �1=3
with q1 = 3, q2 = 100, a1 = 5 and a2 = 0.05.
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su;w ¼ 1þ ea1 q1� u
wð Þ1=3

� �� ��1

1� 1þ ea2 q2� u
wð Þ1=3

� �� ��1
 !

Rþ�2!s �0; 1½ ð4Þ
With q1, q2, a1 and a2, being constant positive parameters characterizing both the half saturation and the flat-
ness of the sigmoid functions.

To take into account the basic physiological processes involved in the acquisition and use of energy by bio-
logical organisms, a simplified version of the dynamic energy budget (DEB) theory is used (Kooijman, 1986,
2000, 2001; Nisbet et al., 2000). In the DEB theory, the ingested energy is assimilated by organisms and
stocked into reserves. A fixed fraction j of the energy utilized from reserves is then allocated to growth of
structural material and somatic maintenance, the remaining fraction 1 � j being devoted to gonad develop-
ment, maturity maintenance and egg formation. For the purpose of simplicity, neither the reserve dynamic
nor the gonad development is considered explicitly in the present work. The ingested energy is supposed to
be used in the same way by any organism: it is assimilated, and a fraction j is used for somatic growth
and maintenance whereas a fraction 1 � j is allocated to reproduction and gonadic maintenance (Fig. 4).
A single set of mean physiological parameters (Table 1) is used to describe the mean energy fluxes through
every consumer organisms of the ecosystem: the ecosystem is modeled as a ‘‘meta-organism’’ characterized
by a mean life history.

According to the DEB theory, the maximum amount of preyed energy that can be ingested at time t during
dt by a predator is supposed to be proportional to a body surface. It follows that Et,u dudt (J m�3), the total



Kingestion
PREY

StructureStructure

somatic
maintenance

somatic
maintenanceκ

1-κ

assimilation

growth

reproduction

Eggs

ORGANISM

gonadic
maintenance

ingestion
PREY

StructureStructureStructureStructure

somatic
maintenance

somatic
maintenance

somatic
maintenance

somatic
maintenance

somatic
maintenance

somatic
maintenanceκ

1-κ

assimilation

growth

reproduction

EggsEggs

ORGANISM

gonadic
maintenance

Fig. 4. Schematic representation of energy flow through organisms (simplified from Kooijman, 2000).

Table 1
Parameters used for numerical simulations (ranges are given when several studies are available)

Parameter Designation and unit Value Source

A Shape coefficient w = al3 (kg m�3) 15 Data from Froese and Pauly (2000)
/ Sex ratio (no dimension) 0.5 Arbitrary
M Nonpredatory mortality for l = 1 m (s�1) 1.524 · 10�8 See Appendix C
t Allometric coefficient of M (no dimension) �0.2995 See Appendix C
Megg Fraction of the spawned eggs which are not

fecunded
0.4 Arbitrary

w Energetic content of one unit of biomass
(J kg�1)

4 · 106 Daan (1975), Edwards et al. (1972), Krohn et al. (1996)
and Kitchell et al. (1978)

x Maximum surface-specific ingestion rate
(kg kg�2/3 s�1)

5.459 · 10�7 See Appendix B

j Fraction of the assimilated energy allocated to
growth and somatic maintenance (no
dimension)

[0.65, 0.88]
0.65

Estimations from Brill et al. (1978) and van der Veer
et al. (2003)

eA Fraction of the ingested energy which is
assimilated (no dimension)

[0.65, 0.99]
0.8

Data and estimates from Essington et al. (2001),
Andersen and Riis-Vestergaard (2003), Krohn et al.
(1996), Kitchell et al. (1978) and Brett and Groves
(1979)

Eg Weight specific cost of growth (Kooijman,
2000) (J kg�1)

7 · 106 van der Veer et al. (2003)

l Amount of energy required for the somatic
maintenance of one unit of weight during one
unit of time (J kg�1 s�1)

0.20949 See Appendix B

q1 Minimum ratio of predator size over prey size 3 Floeter and Temming, 2003; Juanes, 2003 and Ménard
et al. (2006);

q2 Maximum ratio of predator size over prey size 100 Floeter and Temming, 2003; Juanes, 2003 and Ménard
et al., 2006

a1 Shape parameter for the selectivity curve 5 (See text)
a2 Shape parameter for the selectivity curve 0.05 (See text)
C Holling type II half-saturation constant

(J m3 s�1)
117.7 Tuned

v wv is the volume of water explored by a
predator of weight w (m3 s�1)

0.33 Fixed so that wv is proportional to length

sA Arrhenius temperature-dependent correction
factor (K)

[2 · 103,
16 · 103]
8 · 103

Brett and Groves (1979) and van der Veer et al. (2003)

The values are derived from the literature or from estimations detailed in Appendix.
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amount of energy potentially preyed by all predators of weight comprised in the range [u,u + du] at time t

during dt in 1 m3 of water, can be expressed as follows:
Et;u du dt / ½density of predators�t;u du � fbody surfacegu � ffunctional response to preysgt;u � dt

Et;u du dt ¼ wx
nc

t;u du

uw
u2=3fuðpt;uÞdt

¼ xnc
t;uu�1=3fuðpt;uÞdudt

fuðpt;uÞ ¼
pt;u

c
uv þ pt;u

; Rþ!f ½0; 1½

ð5Þ
where x is the mean maximum surface-specific ingestion rate (kg kg�2/3 s�1) and fu is the functional response
to the energy content of preys pt;u ðpt;u ¼

R wmax

v¼0
su;vnt;v dvÞ of a weight u predator. A size-dependent Holling

type II functional response without predator interference is assumed with c the half-saturation constant
(J s�1). uv is the volume of water explored by a predator of weight w per unit of time (m3 s�1) which is sup-
posed to be an allometric function of predator weight (it is assumed that the volume of water explored by a
predator is proportional to its swimming speed which is proportional to its body size – Froese and Pauly, 2000
– hence v is taken equal to 0.33 cf. Table 1).

Then, according to the hypothesis of opportunistic predation (preys of a given weight are eaten in propor-
tion to their selected biomass relatively to the biomass of all possible preys), the amount of preyed energy Et,u/w

dudwdt (J m�3) that predators in the range [u,u + du] take from preys in the range [w, w + dw] at time t during
dt is expressed as follows:
Et;u=w dudwdt ¼ Et;u dudt su;wnt;w dwR wmax

v¼0
su;vnt;v dv

¼ xnc
t;uu�1=3fu

R wmax

v¼0
su;vnt;v dv

� � su;wnt;w dwR wmax

v¼0
su;vnt;v dv

dudt

¼ xnc
t;uu�1=3 su;wnt;w

c
uvþ
R wmax

v¼0
su;vnt;v dv

dudwdt
ð6Þ
The total amount of energy preyed by all predators on preys in the range of weight [w,w + dw] at time t during
dt in 1 m3 of water is then calculated by integration over the weight range of predators:
Et;=w dwdt ¼
Z wmax

u¼wegg

Et;u=w dudwdt ¼ xnt;w

Z u¼wmax

u¼wegg

nc
t;uu�1=3su;w

c
uv þ

R wmax

v¼0 su;vnt;v dv

" #
dudwdt ð7Þ
It follows that the instantaneous mortality rate exerted by all possible predators on nt,w at time t is given by the
following expression:
kt;w ¼
Et;=w

nt;w
¼ x

Z wmax

u¼wegg

nc
t;uu�1=3su;w

c
uv þ

R wmax

v¼0
su;vnt;v dv

" #
du ð8Þ
2.2.2. The growth process: calculation of ct,w

According to Fig. 4, growth corresponds to the use of a fraction j of the assimilated energy diminished by a
maintenance cost proportional to organism body volume and finally converted into structural material at an
energy cost proportional to growth (Kooijman, 2000). Following those simple rules for energy conservation,
the growth of a mean consumer organism is expressed as follows:
dwt;u

dt
¼ jeAEt;u

wN t;u
� lu

w
� Eg

w
dwt;u

dt
ð9Þ
where eA 2 [0,1] is the mean fraction of the ingested energy which is assimilated, j 2 [0,1] is the mean fraction
of this energy which is allocated to growth and somatic maintenance, (1 � j) being allocated to reproduction,
l is the mean amount of energy required for the somatic maintenance of one unit of weight during one unit of
time (J kg�1 s�1) and Eg is the mean weight specific cost of growth (Kooijman, 2000) (J kg�1).

We assume that growth in length cannot be negative for most marine organisms which have an exo- or an
endo-skeleton such as vertebrates, most molluscs, crustaceans, etc. Because weight is assumed to be related to
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length with a fixed allometric function (w = al3, a>0), growth in weight cannot be negative either (see the par-
agraph on starvation mortality for the treatment of mass conservation). It follows that the instantaneous
growth rate of organisms of weight u (kg s�1) can be expressed as:
ct;u ¼
dwt;u

dt
¼ w

wþ Eg

jeAEt;u

wN c
t;u

� l
w

u

" #þ
¼ w

wþ Eg

jeAEt;u

nc
t;u

u� l
w

u

" #þ

¼ w
wþ Eg

jeAxfu pt;u

� �
u2=3 � l

w
u

� �þ
¼ w

wþ Eg

jeAx
R wmax

v¼0 su;vnt;v dv
c

uv þ
R wmax

v¼0
su;vnt;v dv

u2=3 � l
w

u

" #þ ð10Þ
Where [x]+ is the function defined by
½x�þ ¼ x if x P 0

½x�þ ¼ 0 if x < 0

(
:

At food saturation (when the functional response f = 1), this growth rate formulation is equivalent to a von
Bertalanffy (1969) formulation of growth where anabolism is proportional to a surface (weight at a power 2/3)
and catabolism is proportional to body weight.

2.2.3. The reproduction process: calculation of Rt

According to Fig. 4, reproduction corresponds to the use of a fraction 1 � j of the assimilated energy
diminished by a maintenance cost proportional to (1 � j)/j times body weight (Kooijman, 2000). All sizes
of both sex are supposed to reproduce permanently but only female sexual products are re-injected into the
system at w = wegg (according to Cury and Pauly, 2000, egg size of marine fish is remarkably constant between
species and approximately equals to 1 mm).

As for the expression of the growth rate and because the contribution of the weight class w to the total eggs
production cannot be negative, the function []+ is used to express the egg input into the system (see the par-
agraph on starvation mortality for the treatment of mass conservation):
Rt ¼ ð1�M eggÞ/
Z wmax

w¼wegg

eAð1� jÞEt;w � N c
t;w

1� j
j

lw
� �þ

dw

¼ ð1�M eggÞ/
Z wmax

w¼wegg

ð1� jÞeAxnc
t;ww�1=3

R wmax

v¼0 sw;vnt;vdv
c

wv þ
R wmax

v¼0
sw;vnt;vdv

� ð1� jÞ
j

lnc
t;w

w

" #þ
dw

ð11Þ
With R (J s�1 m�3) being the reproductive flux (input of eggs at w = wegg), / 2 [0, 1] the mean proportion of
mature female in each size class, Megg the fraction of the spawned eggs which are not fecunded (Megg 2 [0;1]),
(1 � j) the fraction of the assimilated energy which is allocated to reproduction and wegg, the weight of eggs.

2.2.4. The starvation mortality: calculation of M starv
t;w

When starvation occurs, i.e. when the food ration is not sufficient to meet organism’s needs, growth and/or
reproduction cease and structural materials of the body are lysed and used for maintaining the most important
physiological functions necessary for survival (Kooijman, 2000). The starvation process leads to a quick weak-
ening of organisms which increases mortality. At the ecosystem level, starvation is a net dissipation of energy.
To conserve the mass in a consistent way when growth and/or reproduction cease due to insufficient food
intake (cf. Eqs. (10) and (11)), it is considered that the quantity of energy which is needed for maintenance
but which cannot be provided by food intake is removed from the ecosystem. In this perspective, starvation
acts as a mortality term a the level of the ecosystem and the starvation mortality coefficient can be expressed as
follows using Eqs. (10) and (11):
M starv
t;w ¼ l

w
�

jeAxw�1=3
R wmax

v¼0
sw;vnt;v dv

c
wv þ

R wmax

v¼0 sw;vnt;v dv

" #þ
þ ð1� jÞ

j
l
w
�
ð1� jÞeAxw�1=3

R wmax

v¼0
sw;vnt;v dv

c
wv þ

R wmax

v¼0 sw;vnt;v dv

" #þ
ð12Þ
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2.2.5. The nonpredatory mortality: calculation of Zt,w

The mortality for other causes than predation includes diseases, parasites, ageing, etc. Since large organisms
exhibit much longer life span than small organisms (e.g., Speakman, 2005), it is simply supposed to be a
decreasing allometric function.
Fig. 5
biolog
Zw ¼ Mlt ¼ M
w
a

� 	t=3

ð13Þ
With M being the nonpredatory mortality rate for a 1 m long organism (s�1), l being body size (m), a (kg m�3)
being the coefficient linking weight to cubed length (w = al3) and t a parameter.

2.3. Conservation of energy

In our model, primary production is the only supply of energy to the system. This is appropriate in open
ocean ecosystems where phytoplankton is the only energy input at the basis of the food chain. Energy is
injected into producer size classes which do not grow. It is only transferred to consumers through predation.
The model formulation is energy conservative and losses from the system occur only through nonpredatory
mortality (M > 0), loss of male sexual products (/ < 1) and dissipation processes such as imperfect efficiency
of the assimilation process (eA < 1), maintenance expenditures (l > 0) and energetic cost of growth (Eg > 0). If
P = l = M = Eg = 0 and eA = / = 1, the total quantity of energy in the system is conserved and kept con-
stant (even if its distribution in the weight-spectrum changes through time).

2.4. Temperature effect on physiological rates

Due to its major importance in controlling chemical reactions, temperature strongly influences metabolic
rates of living organisms (Clarke and Johnston, 1999; Kooijman, 2000; Pörtner, 2002; Clarke, 2004; Speak-
man, 2005). Despite its purely molecular basis, the description of Arrhenius (Fig. 5) based on the van’t Hoff

equation (kðT Þ ¼ k1e �
Ea
RTð Þwith k a reaction rate, k1 the frequency factor, Ea the activation energy, R the gas

constant and T (K) the ambient temperature) fits well temperature effects on the physiological rates of organ-
isms at the intra-specific level (Kooijman, 2000; Clarke and Fraser, 2004). Such effects are especially important
to take into account given that most marine organisms are poı̈kilotherms and hence their internal temperature
equals ambient water temperature which is potentially variable. The Arrhenius equation does not keep a
mechanistic meaning at the inter-specific level (Clarke, 2004; Clarke and Fraser, 2004). However, it still pro-
vides a good statistical description of temperature effects on metabolic rates at the ecosystem level, even if
purely chemical effects are altered by complex eco-evolutionary processes acting at this scale (Clarke and
Johnston, 1999; Gillooly et al., 2001, 2002; Enquist et al., 2003; Clarke, 2004; Clarke and Fraser, 2004). In
our model, the Arrhenius temperature-dependent correction factor A(T) is used to correct ingestion rate,
maintenance rate, nonpredatory mortality rate and swimming speed.
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rateðT Þ ¼ rateðT refÞ � AðT Þ with AðT Þ ¼ e
sA

T ref
�sA

T

� 	
ð14Þ
With Tref (K), the reference temperature and sA, a parameter (the ‘‘Arrhenius temperature’’ which equals Ea

R Þ.
Combining Eqs. (1)–(3), (8) and (10)–(14) gives the full model which is presented in a compact form in

Appendix A.

2.5. Numerical approximation

Marine ecosystems encompass very different organisms ranging from very small organisms such as phyto-
plankton cells (10�6 m, 10�16 kg) to very large organisms such as adult fish predators (4 m and more than
650 kg for giant bluefin tuna or swordfish for instance). To account accurately for growth and predation pro-
cesses over such a large range of size would require numerically approximating the model with an extremely
small resolution over an extremely high number of size intervals. Alternatively, a base a log scale can be used
to ensure that processes are considered at the proper resolution whatever the size of organisms is and to keep a
limited number of weight classes. Using such a length-based log scale can be done by defining - ¼ lnðl�bÞ

lnðaÞ � c ¼
lnða�1=3w1=3�bÞ

lnðaÞ � c () w ¼ aða-þc þ bÞ3 with a and b being fixed parameters and - = {1, 2, 3, . . . ,n}. To be

able to choose easily the grid characteristics, the parameters b and c are expressed in terms of lmin and lmax

which are fixed so that the grid depends only on a (Fig. 6). Because the present study focuses mostly on large
consumer organisms such as fish or large meso-zooplankton ranging from 1 mm to 2 m, a is set at 1.04 which
corresponds to grid cells varying from 1.5 mm for the smallest size class to 75 mm for the largest class. An
irregular grid is derived calculating weight steps dwi so that each grid point wi is placed at the middle of its
associated grid cell (Fig. 6a). The first grid point which represents producers is placed at 1.24 · 10�3 m which
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corresponds to the ]10�5 m, 1.56 · 10�3 m[ size range. This size range obviously exceeds the phytoplankton
size range (which roughly extends from 10�6 m to 10�4 m) and covers also microzooplankton and small
meso-zooplankton sizes. However, it has to be kept in mind that our paper aims at representing the behaviour
of a generic size-spectrum model formulated independently from the size range considered. To optimize com-
putation time, the discretization used here focuses mostly on large organisms, as an illustration. Using our
model to represent specifically small organisms such as small copepods would require refining the discretiza-
tion used for small sizes. Such a grid refinement would not change the qualitative behavior of the model (but
would be more costly in terms of computing time, allowing less simulations to be made). In this perspective,
two coupled size-spectrum could profitably be used, one for small zooplankton and one for larger organisms
such as fish and large zooplankton.

The model is integrated numerically along 101 length/weight classes from lmin = 10�5 m to lmax = 2 m
(Fig. 6b). Producers are assumed to occupy only the first length/weight class and consumers to range from
the second to the 101th class (no overlap between their respective ranges).

Integrals are evaluated using first order approximations. Since the growth rate cannot be negative, a usual
first order upwind finite difference scheme explicit in time is used to integrate Eq. (2). Most of the parameters
used in the model have a clear physiological or ecological significance and are well documented in the litera-
ture, in both experimental and theoretical studies. The values used for simulations are given in Table 1 with
the corresponding references of the literature. The maximum surface-specific ingestion rate x as well as the
maintenance rate l are estimated given mean von Bertalanffy (1969) parameters (growth rate K and asymp-
totic size L1) of fish (cf. Appendix A). The estimation of nonpredatory mortality rate (parameters M and t) is
based on assumptions about the size-dependent mean life duration of marine organisms (Appendix B).

The value of Pt, the primary energy production which enters the system is calculated so that the stationary
concentration of phytoplankton in the reference simulations matches the value of 3144.225 J/m3 of seawater
which is approximately equivalent to 10�3 N mol m�3 and that we use as the reference concentration for pro-
ducers (multiplying the redfield ratio C:N = 106:16 by the biomass free energy which is 474.6 kJ C mol�1 –
Kooijman, 2000 – gives 3,144,225 J/mol of N). This value is then divided by the weight range of producers
in the model [1.5 · 10�14 kg, 5.72 · 10�8 kg] to obtain the value for the distribution function of the energy con-
tent of the producers np

t;w ¼ 549:108 J kg�1 m�3. This values is obtained in the reference simulation using
Pt = 1177 J day�1 m�3.

2.6. Simulation experiments

In a first set of simulations, the existence of a linear steady state is tested by running the model during 50
years. The sensitivity of the steady state to the individual value of the model parameters is then explored sys-
tematically. For that purpose, the parameters x, l, Megg, M, t, c, j, q1, q2, eA, Eg are varied individually in a
large range around their reference values (Table 1) and the influence of their variations on the stationary size-
spectrum is considered.

3. Model behaviour

3.1. Steady state

The first set of numerical experiments was conducted using the reference values of the parameters (Table 1).
In stable environmental conditions (constant primary production and constant temperature), the distribution
of energy in the ecosystem converges from any positive initial distribution to a stationary quasi-linear size-
spectrum (Fig. 7a). Only the first point (the primary producers) departs from the linear spectrum as well as
the largest length classes for which the spectrum is slightly curved downward due to the slowdown of growth
for large sizes close to the asymptotic length.

Fig. 7b–e provides the reader with the time evolution of the functional response function, the growth coef-
ficient, the nonpredatory, predatory and starvation mortality coefficients and the egg production per size clas-
ses at steady state and during the transition phase. At steady state, the functional response increases with
organism size from the highly food-limited small sizes to the less limited large sizes (Fig. 7b). The growth rate
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(in weight) as a function of organism size is dome-shaped, reaching a maximum for intermediate to large sizes
and then decreasing down to zero for length equal to L1 (Fig. 7c). The log–log predatory mortality curve at
steady state shows a quasi-linear decreasing trend for organisms between 2 mm and 20 cm (Fig. 7d) with
higher mortality rates for producers. For larger organisms, the predation mortality decreases sharply down
to zero for length above 70 cm. The log–log contribution of each size class to egg production (Rt) at steady
state (Fig. 7e) exhibit a linearly decreasing trend with a downward curvature for sizes above 1.4 m, when main-
tenance processes are becoming to be non-negligible in Eq. (11).

When the reference values of the parameters (Table 1) are used, the slope of the stationary length-spectrum
equals �3.175 which is equivalent to a slope equal to �1.058 for the weight-spectrum (Fig. 8).
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3.2. Sensitivity to the parameters

The slope of the stationary size spectrum is not sensitive to the value of the maximum surface-specific inges-
tion rate (x) but its intercept decreases when x increases (the size spectrum is translated vertically, cf. Table 2
and Fig. 9a). The stationary size spectrum is not sensitive to the value of the maintenance rate l (Table 2 and
Fig. 9b). It has to be noted, however, that for length classes close to L1 (biomass is null for length greater than
L1, cf. Appendix B), the stationary size-spectrum may departs from its linear shape and be curved downward.
This is the case for low x values or for high l values (Table 2 and Fig. 9a and b).

Varying the value of the fraction of the spawned eggs which are not fertilized (Megg) does not change the
size spectrum over medium and large size classes (Table 2 and Fig. 9c). Only small size classes are sensitive to
Megg and depart from the linear solution when Megg is smaller than 0.4. Conversely, the nonpredatory mor-
tality coefficient M only influences the large classes of the size-spectrum, leading to a spectrum curved down-
ward for high M values (Table 2 and Fig. 9d). Over the explored range, the exponent m of the nonpredatory
mortality length-dependence has almost no effect on the size-spectrum (Table 2 and Fig. 9e).

The Holling type II half-saturation constant c has only a weak effect on the stationary size spectrum slope.
However it has to be noted that decreasing its value leads to lower phytoplankton and small organism biomass
which departs from the linear size spectrum. Conversely, high values of c lead to smaller L1 (Table 2 and
Fig. 9f).
Table 2
Qualitative summary of the sensitivity analysis of the model (slope, intercept and curvature of the stationary size spectrum) to the value of
its main parameters

Parameter Designation Slope Intercept Curvature

M Nonpredatory mortality for l = 1 m 0 0 ++
t Exponent of the M length-dependence 0 0 0
Megg Fraction of the spawned eggs which are not fecunded 0 0 0
x Maximum Surface specific ingestion rate 0 � �
j Fraction of the assimilated energy allocated to growth and somatic maintenance 0 0 �
eA Fraction of the ingested energy which is assimilated + 0 �
Eg Weight specific cost of growth � 0 +
l Maintenance rate 0 0 +
q1 and a1 Minimum ratio of predator size over prey size + 0 0
q2 and a2 Maximum ratio of predator size over prey size + 0 0
C Holling type II half-saturation constant 0 ++ +

0 = no effects, + = positive effect and � = negative effect.
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The fraction of the assimilated energy which is allocated to growth and somatic maintenance (j) slightly
influences the curvature of the spectrum for small lengths (Table 2 and Fig. 9g). j also influences positively
the L1 value (and hence the curvature of the spectrum for large lengths). For high values of j, the model pro-
duces unstable oscillations (waves propagating from small to large size classes cf. Fig. 9g). This unstable oscil-
latory phenomenon does not appear when Megg is set equal to 0 (Fig. 9h).

Increasing the size of the smallest prey that can be eaten by a given predator (decreasing q2 and increasing
a2) decreases substantially the slope of the stationary size-spectrum (Table 2 and Fig. 9i). Increasing the size of
the largest prey that can be eaten by a given predator (increasing q1 and decreasing a1) increases the slope of
the stationary size-spectrum (Table 2 and Fig. 9j).

Decreasing the fraction of the ingested energy which is assimilated (eA) slightly decreases both the slope of
the size spectrum and L1 (Table 2 and Fig. 9k). On the contrary, an increase of the weight specific cost of
growth Eg decreases both the slope of the size spectrum and L1 (Table 2 and Fig. 9l).
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Fig. 9. Systematic sensitivity analysis of the steady state to the parameters. Different values of x, l, M_egg, M, m, c, j, q2, q1, eA and Eg

varying in a large range around their reference values are considered respectively in (a)–(l). The sensitivity of the steady state to the
parameter j is considered in the case where M_egg = 0.4 (g) and M_egg = 0 (h).
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4. Discussion

4.1. Our model in the context of previous studies

The development of continuous size spectrum models based on allometric growth and mortality processes is
a long lasting story in quantitative marine ecology (e.g., Platt and Denman, 1978; Silvert and Platt, 1978, 1980;
Dickie et al., 1987; Cushing, 1992; Duplisea and Kerr, 1995; Arino et al., 2004; Benoit and Rochet, 2004).
Models first dealt with constant growth rate. Later, Silvert and Platt (1980) assumed a constant size ratio
between a predator and its prey. More recently, Arino et al. (2004) incorporated reproduction to the model
and Benoit and Rochet (2004) linked explicitly the growth rate to the actual quantity of food being eaten
and extended the predation process to any distribution of prey selectivity. In the model of Benoit and Rochet
(2004), a given predator is supposed to eat all the potential preys swimming in a searched volume which
increases allometrically with predator size. Like previous models, their model is built on a ‘‘supply system’’
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vision of the ecosystem: all the selected preys supplied in the ‘‘hunting volume’’ of the predator are eaten. Con-
sequently, the growth rate of predators is not limited: if the biomass of prey tends to infinity, the growth rate
of predators will also tend to infinity. Such a characteristic is not realistic and is furthermore likely to generate
instability as reported by Benoit and Rochet (2004).

Conversely, our approach is based on a symmetrical ‘‘demand system’’ vision of the ecosystem: any organ-
ism in the ecosystem targets a maximal amount of energy proportional to its squared length to meet its
growth, reproduction and maintenance needs and cannot eat more than this demand. Consequently, the
growth rate of predators is limited: if the biomass of prey tends to infinity, the growth rate of predators tends
to a maximum. Hence, in our model, a predator generates a mortality rate proportional to its maximal needs
(and related to the biomass of prey with a Holling type II functional response) which is distributed over its
prey range. Energy from prey is then shared between all their possible predators, proportionally to the mor-
tality they exert. If predator needs for growth and/or reproduction are not satisfied, a starvation mortality
coefficient is applied, which is proportional to the maintenance needs not fulfilled by assimilated energy.
Our approach allows to take into account more biological and ecological processes (opportunistic size-struc-
tured predation, predators competition, allocation of energy between growth and reproduction, somatic and
gonadic maintenance, starvation mortality) in a rigorous mass-balanced physiologically based formulation
derived from the dynamic energy budget theory (Kooijman, 2000).

4.2. Stationary solutions

Numerical simulations show that the model produces stable solutions which do not need to be stabilized
using diffusion or complex boundary conditions. In most cases with constant environmental conditions, the
model converges toward a stationary log–log linear size-spectrum which is independent of initial conditions
(Fig. 7). Numerically, 20 years are most of the time sufficient to approximate the stationary solution with a
good precision. It is theoretically well established that size-structured predator–prey models admit a linear
log–log size-spectrum as a stationary solution (Silvert and Platt, 1980; Arino et al., 2004; Benoit and
Rochet, 2004) as far as the smallest sizes are put apart (Shin and Cury, 2004). Our simulations corroborate
previous studies and show that this important property still holds when size-dependent opportunistic pre-
dation, predator competition, energy allocation between growth and reproduction, nonpredatory mortality
and starvation mortality are explicitly taken into account as key processes governing energy flow through
marine ecosystems.

From an ecological perspective, the distributed nature of predation over a large size range multiplies the
weak links in ecosystems, and hence is likely to dampen oscillations between consumers and resources and
enhance persistence and stability (McCann et al., 1998; McCann, 2000). In other respects, the stationary state
can be considered as the ‘‘ultimate state of maturity’’ of an ecosystem as defined by Odum (1969). Being
always submitted to perturbations, ecosystems are actually in a never-ending transient state of ‘‘maturation’’
toward their steady state ‘‘maturity’’.

Using our reference set of parameters, the slope of the simulated log–log biomass spectrum equals �1.06.
This value matches fairly well with the values reported in empirical studies (e.g., Macpherson and Gordoa,
1996; Zhou and Huntley, 1997; Quiñones et al., 2003; Marquet et al., 2005). For the first size class of the spec-
trum however (the size class of the producers), the model departs from the linear solution. This is likely to be
due to the poor representation of producers in the model, in particular to the lack of representation of phy-
toplankton growth and division. Furthermore, our numerical simulation grid, which focuses on consumer
dynamics, has only one size-class for representing producers which likely leads to potential irregular solutions
when approximating the integrals over small sizes. It has furthermore to be noted that for large sizes close to
L1, the size spectrum is curved downward. This phenomenon corresponds in our model to the slowdown of
growth around the maximum size.

4.3. Sensitivity of the simulated size-spectrum to the parameters

The slope, intercept and curvature of the stationary size-spectrum are generally not very sensitive to the
parameters of the model, at least in the explored ranges (Table 2 and Fig. 9). The parameters can be classified
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according to their qualitative effect on the size spectrum. Some parameters, such as the size of the smallest prey
that can be eaten by a given predator (q2), act only on the slope of the spectrum (cf. Fig. 9i and j) when others,
such as the maximum surface specific ingestion rate (x), act only on its intercept (Fig. 9a). Other parameters,
such as the nonpredatory mortality coefficient (M), modify the curvature of the spectrum (Fig. 9d) when some
others, such as the fraction of the spawned eggs which are not fertilized (M_egg), have only a local influence
on the very small sizes of the spectrum (Fig. 9c). Finally, most parameters modify slightly the L1 value and
hence influence the linearity of the spectrum for large sizes.

It has furthermore to be noted that, as suspected by Arino et al. (2004), for certain combinations of extreme
values of the parameters, the stationary solution becomes unstable and oscillatory solutions appear, even in
the case of stable phytoplankton production and constant temperature (Fig. 9g).
5. Conclusion

The proposed model improves previous studies by incorporating processes playing an important role in the
energy fluxes through marine systems. It is furthermore based on a ‘‘demand system’’ approach which leads to
more stable solutions than previously developed ‘‘supply system’’ models. Despite its simple ecological
assumptions, the model seems to represent adequately the main qualitative and quantitative characteristics
of marine size-spectra which have been reported in empirical studies and enables testable insights regarding
the effect of environmental variability and changes on ecosystems. Those effects are explored through simula-
tions in a companion paper (Maury et al., 2007) which focuses on temperature and primary production effects
on the size spectrum.

However it has to be kept in mind that marine ecosystems encompass a large number of zoological
groups which exhibit very different eco-physiological and behavioral characteristics. Each zoological group
is in turn composed of a large number of species, each having various life histories (various growth rates,
longevities and sizes at maturity). Hence, in real ecosystems, small organisms comprise adults of various
small short-living species as well as juveniles of various large long-living species. Despite this obvious diver-
sity, our model assumes constant physiological parameters and rules for any consumer organisms in the eco-
system. That could constitute a limitation of our approach since biodiversity plays important functional
roles in ecosystems. This furthermore leads us to use simplified hypothesis about the reproduction process
since all size classes are supposed to contain the same proportion of mature individuals. Formalizing and
quantifying the effects of biodiversity in size-spectrum models is indeed critical and will be an important
goal of our future work.
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Appendix A. Full model equation

Combining Eqs. (1), (2), (7) and (9)–13 gives the full model equation:
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the Arrhenius temperature-dependant correction factor.

Appendix B. Calculation of x and l as a function of the Von Bertalanffy growth parameters K and L‘

At food saturation, our growth Eq. (9) is related as follows to the Von Bertalanffy growth equation:
dw
dt
¼ Aw2=3 � Bw with
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This well known equation can be rewritten in length and integrated between l = 0 and l = lt to get lt as a func-
tion of time:
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This expression is used to express x and l as a function of the Von Bertalanffy growth parameters K and L1:
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For the numerical applications presented in the present paper, an asymptotic length L1 = 2.2 m is assumed
with a corresponding growth rate K = 0.2 year�1 deduced from the mean statistical relationships observed be-
tween K and L1 by Froese and Pauly (2000).

Appendix C. Estimation of the mortality parameters M and t

To estimate the parameters M and t which determine the length-dependent nonpredatory mortality, five
groups of organisms having very different mean length are considered (diatoms, copepods, and three fish of
0.1 m, 0.8 m and 1.7 m). For each group an arbitrary life span is attributed and the corresponding mortality



Table 3
Estimation of the nonpredatory mortality parameters M and t (see text)

Species Mean size Estimated life span Estimated mortality Modeled mortality Mlt

Diatoms 5 · 10�5 m 90 days 2.56 · 10�2 day�1 2.56 · 10�2 day�1

Copepods 5 · 10�4 m 180 days 1.28 · 10�2 day�1 1.28 · 10�2 day�1

Fish 0.1 m 0.1 m 730 days 3.15 · 10�3 day�1 2.63 · 10�3 day�1

Fish 0.8 m 0.8 m 1825 days 1.26 · 10�3 day�1 1.41 · 10�3 day�1

Fish 1.7 m 1.7 m 2555 days 9.01 · 10�4 day�1 1.12 · 10�3 day�1
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is estimated assuming that the life span corresponds to the age at which only 10% of a cohort remains (Table
3). The parameters M and t are estimated by fitting the modeled mortality curve to the estimated mortality
curve (Table 3).
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